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Abstract-If two sets of vectors (in 
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N-dimensional real Euclidean 
space R\)  do not have an element in common, then they can always 
be separated from each other by using a series of N - 1 dimensional 
hyperplanes in R\ . In piecewise-linear classification, one finds such a 
series of hyperplanes using a training set containing elements from both 
classes. Efficient methods to find such a piecewise-linear separation for 
the training sets have been proposed in the literature. However, since 
complete separation of the training set fits the “noise” as well as the 
“signal” in the training set, the desirability of such a complete separation 
depends on the nature of the data. In this paper, we make use of a 
real data set (containing 9-D measurements of fine needle aspirates of 
a patient’s breast for the purpose of classifying a tumor’s malignancy) 
for which early stopping in the generation of the separating hyperplanes 
is not appropriate. We compare a piecewise-linear classification method 
(both with complete separation on the training set and with separation 
using only seven hyperplanes) with classification based on a single (hut 
in a statistical sense optimal) linear separator. A precise methodology 
for comparing the relative efficacy of two classification methods for a 
particular task (including a way of providing the statistical significance 
of the results) is described and is applied to the comparison on the 
breast cancer data of the relative performances of the two versions of 
the piecewise-linear classifier and the classification based on an optimal 
linear separator. It is found that for this data set, the piecewise-linear 
classifier that uses all the hyperplanes needed to separate the training 
set outperforms the other two methods and that these differences in 
performance are significant a t  the 0.001 level. There is no statistically 
significant difference between the performance of the other two methods. 
We discuss the relevance of these results for this and other applications. 

Index Terms-Malignancy detection, medical diagnosis, optimal linear 
separation, pattern recognition, performance evaluation, piecewise-linear 
classification. 

I. INTRODUCTION AND BACKGROUND 
In the problems that are the subject matter of this article, each 

item of a data set is represented by an -Y-dimensional vector s of 
real numbers. We are assuming that we have to make a binary (yes or 
no) decision regarding s, such as “does s indicate that a malignancy 
is present?” We use the terms normal and abnormal to distinguish 
between the s ’ s  in the two classes. We refer to the abstract for an 
outline of that which follows. 

The classification methods under consideration make use of linear 
abnormality index functions. These are linear functionals n on R.‘, 
i.e., they associate with each S-dimensional vector s in R.‘. a real 
number ~ ( s ) ,  where the operator n itself can be represented as a 
nonzero element of R” whose nth component is so that 

( s T Z  is the nth component of s). Further, we assume that the 
components a,t are scaled so that 
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In the context of standard pattern classification theory [l], the vector 
of n ,, ’s corresponds to the weight vector of a linear discriminant 
function. The reason why we introduced linear abnormality index 
functions, as opposed to using the classical linear discriminant 
functions, is that we are interested in the behavior of the latter when 
the weight vector is fixed, but the threshold (called the threshold 
weight in [l]) is allowed to vary. Geometrically, there is a one-to- 
one correspondence between weight vectors that satisfy (2) and sets 
of parallel hyperplanes and, once one such set is chosen, between 
the thresholds and the elements of the set. In the classical approach 
[l], [2] ,  one typically searches for a linear discriminant function that 
is in some sense optimal. This involves searching for an optimal 
combination of the weight vector and the threshold. In our discussion, 
we find it more convenient to separate them. 

For any particular application, one has to use a training set of 
normals and abnormals to find the appropriate a’s for that application. 
Furthermore, the training set is also used to find “optimal thresholds,” 
which are defined as follows. 

Let S and 1- be any two finite nonempty subsets of R\ , a be 
an arbitrary linear abnormality index function, and t be any real 
number. We define Jf (S. I-* o.  t )  to be the number of .r’s in S for 
which n ( a )  > t plus the number of y’s in I’ for which a ( y )  5 t .  
We think of 3 I ( S .  I-. a. t )  as the number of misclassified items for 
normal set S, abnormal set I-, linear abnormality index function (1, 
and threshold t .  We define the optimal range T ( S .  Ir. a) to be the 
closure of the set of real numbers t for which d I ( X .  I?. n. f )  assumes 
its minimal value. (It is easy to see that for any T ,  there exists an e, 
such that the value of .\I (S. I-. n. t ) is constant for all t in the range 
[ T .  T + cl. This is why we defined an “optimal range” rather than 
an optimal value.) We will assume that S, I-, and a are such that 
there exists a positive integer J and, for 1 5 J 5 .I, real numbers 
(J(-Y. I-. a) and //,(S. I-. n )  satisfying 

(,(-I-.I-.n) < ul(-17.1r.n). for 1 < J  5 J (3)  

J 

T (  x. 1: a ) = U [ I  J (S. 1: a ). (1 (-Y, y. a )] (5 )  
J Z I  

i.e., that T (  X .  I-. a ) is the union of a finite number of closed intervals. 
Given a training set consisting of a set .Y of known normals 

and a set 1- of known abnormals and given a linear abnormality 
index function a, any threshold t in the interior of the optimal range 
T (  S. I-. n ) will minimize the number -If (.’i. 1: n, t ) of misclassifi- 
cations in the training set. Since future decisions have to be based 
on a fixed threshold rather than on a range, we need to select one 
particular t .  We do this by making further use of the training set as 
follows. Motivated by the assumption that the elements of S and I- 
were randomly selected from the population, we define the prevalence 
p~ (X. I-) of normals and the prevalence p l  (S. 1‘) of abnormals as 

p~\ ( -Y.17)  = ISl/(lSl + 11-1) 

p y  (-Y.I*) = I171/(l-Yl + Ill) 
(6 )  

(7) 

where we use IS1 to denote the number of elements in a finite set S. If 
T ( S .  I-. o ) consists of a single interval, then the more prevalent the 
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abnormals are, the nearer the threshold to be used for classification 
should be to the lower end of the interval. Thus, the function 

t ( X , Y , c , d )  = p ~  ( X . Y )  x !(c,d)+px(-X.I') x u ( c . d )  (8) 

where ( ( c ,  d) is the smaller and u (  e, d )  is the larger of c and 
d, provides us with our sought-after threshold in case T ( S .  I.', a )  
consists of a single interval with end points c and d .  If there are 
multiple intervals, then we combine them into one according to their 
lengths, i.e., we define 

C(X,E:a) 

u ( X ,  1; a )  

c,"=, u J ( S , I . : a )  x (7LJ(-Y,E:Q) - t1(-Y.I7.a)) 
c,J=l(uJ(x.Y.rk) -PJ(X,E:a))  . (10) - - 

We then define the optimal threshold t(X, I.', a )  based on the normal 
set X, abnormal set E', and linear abnormality index function Q by 

t(X.E:a) = f(X,I.'.t(X,Y, a ) .  u ( 9 . 1 :  N)). (11) 

To summarize, for a training set consisting of normals S and 
abnormals I.' and a fixed linear abnormality index function (alter- 
natively, weight vector) a, (11) provides a threshold t ,  which is 
optimal in the sense that 1) the number of misclassifications in the 
training set using the linear discriminant function based on the weight 
vector a and the threshold t will not be more than the number 
of misclassifications using a linear discriminant function based on 
the same weight vector and any other threshold and 2)  among all 
thresholds t that have this optimality property, the one provided by 
(11) matches best the prevalances of normals and abnormals in the 
training set. 

11. PIECEWISE-LINEAR CLASSIFICATION 
The following methodology was designed to achieve complete 

separation of disjoint sets of normals and abnormals. It iteratively 
builds up a (possibly nonconvex) piecewise-linear classifier that, after 
a finite number of iterative steps, is guaranteed to distinguish correctly 
between the normals and abnormals in the training set (provided only 
that there is no s that occurs both as a normal and as an abnormal 
in the training set). For a background to this method, see [3] and 
its references. (There are alternative approaches to piecewise-linear 
classification; for an example, see [4].) 

We first give an intuitive description of the method. Given any 
(finite) training set of normals and abnormals, from any set of parallel 
hyperplanes (defined by a fixed linear abnormality index function), 
one can always select a pair of hyperplanes such that all the normals 
lie on one side of one of them, and all the abnormals lie on the 
opposite side of the other one. If the sets of normals and abnormals 
are linearly separable, then a single hyperplane can be used for both 
hyperplanes of this pair, and it provides a classifier that is error free 
for the training set. If the set of normals and abnormals is not linearly 
separable, then both hyperplanes of the pair will correctly classify all 
elements in the training set that do not lie between them, but they 
may misclassify elements that do lie between them. For any linear 
abnormality index function, there will be a pair of such hyperplanes 
for which the distance between them (and, hence, the width of the 
region of potential misclassification) is minimal. We select, among 
all possible linear abnormality index functions, the one that (in a 
rather specific sense) minimizes this just-defined minimum distance. 
This linear abnormality index function and the associated pair of 
hyperplanes provide a partial classifier that makes a decision for 

all points that are not between the hyperplanes. For points that are 
between the hyperplanes, we do the following. We repeat the process 
just described for those normals and abnormals in the original training 
set that fall between the hyperplanes. This provides a new pair of 
hyperplanes, which can be used for (partially) classifying points that 
could not be classified before. We keep repeating this process until 
the leftover normals and abnormals become linearly separable, and a 
final single hyperplane can be used in the classification process. We 
now give a precise version of this intuitive description. 

For any finite nonempty subsets X k  and Y k  of R N ,  we can find 
a linear abnormality index function ak such that 

is as small as possible. The existence of such a minimizing ak follows 
from the continuity of the functional in (12) and the condition on the 
unknowns cy, as given by (2). (An alternative precise statement is 
given in Theorem 3.2 of [3]. The method proposed there for finding 
ak uses linear programming and therefore works in polynomial time 
when the components of s in X' and y in lrh are rational, which is 
not a restriction in any application. In our implementation, we  have 
been using a multidimensional biased random search technique [5] 
to estimate the a'.) 

Given a finite training set consisting of nonempty sets of normals X 
and abnormals I.-, we define a nonnegative integer and sequences 
X'", Irk, a k ,  e'", d k  (0 5 k 5 A-) as follows. The method makes 
use of two logical variables called stuck and sept. 
PROCEDURE 

k = 0; 
Step (0) 

So = X and I." = 1'; 
sfuck = .false. and srpt = .false. 

While stuck = .false. and seyt = .false.; 
Step (i) 

find ah which minimizes (12); 

if d h  < c k ;  
then 

end then; 
else 

sept = . true.; 

if for all z E -X', a k ( s )  2 ck and for all y E I r k ,  
n k ( y )  I d k ;  

then 

end then; 
else 

stuck = .true.; 

.Y"+' = - X k  - {z E X k  I a'((.) < c k }  (15) 

= - { Y  E Y k  I a k ( y )  > d k }  (16) y k + 1  

increase k by 1; 
end else; 

end if; 
end else; 

end if; 
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end while. 

Ii = k .  
end PROCEDURE. 

Step (ii) 

Several comments are in order about this procedure. 
First of all, the procedure is well defined in the sense that every 

time Step (i) needs to be executed, neither X k  nor IYk is empty. This 
is proved by induction. The statement is valid for k = 0. Suppose 
now that is is valid for a particular k .  In order to get to k + 1, it has 
to be the case that d k  2 c k .  Consider an .? in -Yk and a 8 in Irk' such 
that dk  = a'(.?) and ck = ~ ' ( g ) .  Then, ak(.?) 2 c';, and therefore, 
I E X"+' and n k ( g )  5 d k ,  and therefore, ij E I?';+'. 

Second, we see that the procedure is bound to terminate. This 
follows from the fact that for k < A-, either there is an s in -Yk such 
that ak(s) < ck or there is a y  in ITk such that a k ( y )  > d'; (or both). 
Hence, for all k < A-, either I-Yjlifll < IXkl or JI";++'I < lI-kl (or 
both). Since both -Yo and I'O are finite and we have just proven 
that every time Step (i) is entered, neither .Y'; nor Irk is empty, it 
follows that Step (i) can only be entered a finite number of times, 
and therefore, the procedure must terminate. 

Third, we note that if the procedure terminates with srpt  being 
true, then for any t such that <" < t < c"., we have that for all 
.r E X" and for all y 5 Irri.~-ri(.r) < t < nri(y) ;  therefore, 
a linear separation of -Yri and E'" can be achieved. On the other 
hand, if the procedure terminates with stuck being true, that implies 
that the sets X" and E'" are rather intermingled. One- could now 
use alternative methods to further separate AY'i and 1'" (see, e.g., 
the so-called degeneracy procedure in [3]), but we feel that such need 
not be introduced in this paper for two reasons. First, as noted in (31, 
for most real problems, the condition that results from s t u c k  being 
true does not occur. (This is also what we found in the experiments 
reported below.) Second, we feel that if the condition does occur, it 
indicates a genuine overlap between normals and abnormals in the 
underlying distributions and further separation of the -YE and 17" 
would be rather artificial. 

Based on the sequences defined by the above procedure, the 
following algorithm can be used to classify an arbitrary element s 
of R". The algorithm uses a nonnegative integer li, the choice of 
which is discussed below. The only restriction is that I< 5 K-. 
ALGORITHM 

k = 0. 

While k < I<; 

Step (0) 

Step (i) 

if a'( s) < c k ,  then classify s as normal and stop; 
if 0"s)  > d k ,  then classify s as abnormal and stop; 
increase k by 1; 

end while. 

if a" (s) 5 t(  XI'. , I"'. cIi. d" ), then classify s as normal and 

classify s as abnormal. 

Step (ii) 

stop; 

end ALGORITHM. 
In Step (ii), we use the t defined by (8). Note that the algorithm 

uses a total of 21 i  + 1 hyperplanes. 
The method that is recommended in [3] is essentially the same as 

the above algorithm with li = A- and with a degeneracy procedure to 
avoid getting "stuck." Our preference is not to exclude the possibility 
of stopping prior to complete classification of the training set. In 
general, li should be chosen large enough to make use of all the 
relevant information in the training set but not so large that we start 
fitting irrelevant information (i.e., noise). A methodology for choosing 
the li is described in Section VI. 

111. CLASSIFICATION BASED ON AN OPTIMAL LINEAR SEPARATOR 

Since some of our early experiments (see Section VI below) 
indicated that often a very small value of li is an appropriate stopping 
point, it appeared to us reasonable to consider, as an alternative to the 
classification method described in the previous section, another one 
that uses a single linear abnormality index function n but one that 
is an optimal linear separator. This concept comes from statistical 
pattern recognition theory [2] and is defined as follows. 

For any finite nonempty subset S of Rr and any linear abnormality 
index function n, we define a mean and a variance by 

If S and Y are finite nonempty subsets of R" such that at least one 
of r'(S.n) and i)(I7. n )  is not zero. then we define the separability 
of-Y and I' using n by 

(19) 

A linear abnormality index function n is said to be an optimal linear 
separator for X and Ir if for all linear abnormality index functions ,3 

o(X.17 .n)  2 o(-Y.17./3). (20) 

We assume without further discussion that for a given training set 
consisting of .Y and I-, one can find an optimal linear separator 
a and that for this n, the conditions expressed in (3)-(5) hold. 
In practice, we have been using a multidimensional biased random 
search technique [5] to estimate an optimal linear separator for given 
sets of normals and abnormals. 

Once an optimal linear separator n has been determined based 
on the normals S and abnormals I' in the training set, we use the 
optimal threshold defined by (11) to classify an arbitrary element s 
of R' as normal if and only if 

Note that this method of classification is very similar to using the 
algorithm of the last section with li = 0 and replacing a' with an 
optimal linear separator. 

1v. METHODOLOGY OF COMPARISON 

Since we intend to compare the performance of the classification 
methods of the last two sections, in this section, we discuss a general 
methodology for comparing two classification techniques. We adopt 
the (reasonably standard) comparison procedure of [6] and extend it 
with a (reasonably standard) test for statistical significance. 

We assume that we have two (hopefully large) sets X and I' of 
known normals and abnormals. We partition X and I' by randomly 
assigning (with equal probability) elements of X to subsets XI, -Y2, 
..., X ~ O  and elements of I-  to subsets I;, I;, . . . ,  I i o .  For any 
classification method, we do the following, for 1 5 i 5 10. We train 
the method on the normal set I - X ,  and abnormal set I' -1:. Then, 
we use the so-trained method to classify elements in X ,  and in 1;. 
Note that when we are done, each element of -Y and each element 
of I' has been classified exactly once. We define the accuracy of 
the method as the number of correctly classified items in X and I? 
divided by 1-Yl + 11-1. 

If we find that one method is more accurate than another one 
according to this definition, then we still need to decide whether or 
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TABLE I 
SIGNIFICANCE ( P )  OF ALL THE DIFFERENCES BETWEEN THE THREE METHODS ON 

THE WISCONSON BREAST CANCER DATA. (METHOD 1 IS PIECEWISE-LINEAR 
CLASSIFLCATION WITH COMPLETE SEPARATION OF THE TRAINING S E T  

(ACCURACY 0.990). METHOD 2 IS PIECEWISE-LINEAR CLASSIFICATION BASED 
ON FOUR PAIRS OF HYPERPLANES, i.e., USING SEVEN HYPERPLANES FOR 

OPTIMAL LINEAR SEPARATOR (ACCURACY 0.959). FOR DEFINITION OF Q AND 
q, SEE THE TEXT. P IS THE PROBABILITY OF OBSERVING AS HIGH OR HIGHER 

SEPARATION (ACCURACY 0.963). METHOD 3 Is CLASSIFICATION BASED ON AN 

VALUE OF q FOR THE GIVEN VALUE OF Q IF THE NULL HYPOTHESIS 
OF EQUAL PERFORMANCE OF THE Two METHODS WERE CORRECT. 

Q (I P 

1 vs. 2 17 15 <0.001 

1 vs. 3 21 18 <0.001 

2 vs. 3 20 11 0.412 

not our finding is statistically significant. We adopt the sign test [7] 
to provide a level of significance for rejecting the null hypothesis 
that the two classification methods are equally good in favor of the 
hypothesis that the one with the greater accuracy is better. 

In this approach to statistical significance, we look only at those 
elements of S and I‘ that have been classified differently by the two 
classification methods. Let Q be the total number of such elements, 
and let q be the number of such elements that have been correctly 
classified by the classification method with greater accuracy. The null 
hypothesis that the methods perform equally well implies that q is 
a random sample from a binomial distribution with total number of 
items Q and equal probabilities assigned to the two classes. We use 
this binomial distribution to determine the probability of randomly 
selecting an element from it with value q or higher. This probability 
provides the level of significance for rejecting the null hypothesis. 

v. PERFORMANCE ANALYSIS FOR DIAGNOSIS OF BREAST CANCER 

The performance of piecewise-linear classification when applied 
to 9-D data of measurements of a fine needle aspirate taken from a 
patient’s breast is briefly discussed in [3]. Additional data have been 
collected since that time, and now, there is available from the same 
source a data set of 294 normals (no breast malignancy) and of 193 
abnormals (confirmed breast malignancy). We refer to this data set 
as Wisconsin Breast Cancer Data (WBCD). 

We applied three classification methods to this data set. One 
is the method of 131, which is the piecewise-linear classification 
algorithm with I< = &-. (For all of the ten training sets that we 
generated according to the methodology of the last section, we 
found that the procedure that generates terminated with srp t  
true and, hence, stuck false, and therefore, our not including the 
degeneracy procedure of [3] makes no difference to the results 
of the experiments.) The second method is the piecewise-linear 
classification algorithm with the I< chosen to be 3 since it was 
reported in [3] that four pairs of hyperplanes were necessary for 
complete separation of the subset of the WBCD, which was available 
at that time. (To completely separate the normal set S - S, from 
the abnormal set I-  - I;, we needed four pairs of hyperplanes for 
two of the i ’ s ,  we needed five pairs for three of the (’s and six pairs 
for the remaining five i ’ s . )  The third method is classification based 
on an optimal linear separator. The respective accuracies of the three 
methods were found to be 0.990, 0.963, and 0.959. The difference 
in performance between the first method and either of the other two 
was found to be significant at the 0.001 level, but the difference in 
performance between the latter methods is not statistically significant. 
For details of the significance analysis, see Table I. 

We note that in [3], a slightly different version of piecewise-linear 
classification is proposed from the one discussed in this paper. The 
difference is in Step (ii) of the algorithm, where [3] recommends 
(c” + d “ ) / 2  as the threshold based on the final pair. We found that 
using this variant, there were some very minor changes in accuracy: 
that of Method 1 decreased to 0.988 and of Method 2 increased to 
0.967. 

VI. D~SCUSSION 

Classification of multidimensional data in medicine is an important 
topic since, if successful, it can lead to automated diagnosis or at least 
provide a tool to speed up and/or improve diagnosis. 

The method of piecewise-linear classification will completely sep- 
arate two disjoint finite point sets in RlY provided that a sufficient 
number of pairs of separating hyperplanes are used [3]. However, 
it occurred to us that this mathematically desirable property may 
not be very significant in practice since complete separation on a 
training set does not guarantee perfect performance on further data 
(e.g., on a testing set). In fact, after we have delineated the major 
parts of the clusters, the use of additional pairs of hyperplanes may 
even be counterproductive as opposed to using a single optimal- 
threshold hyperplane parallel to the last of the previous pairs since 
the additional pairs of hyperplanes would likely to be fitting the 
“noise” in the training set and would therefore be less relevant to 
the testing set than the prevalences of normals and abnormals on 
which the optimal threshold is based. This reasoning is reinforced 
by statements made in other papers that report on experimental 
comparison of methods that are trained on a training set. In [SI, the 
authors say that “One surprising result of these experiments is how 
well the simple perceptron algorithm performs. The perceptron was 
largely abandoned as a general learning mechanism about 20 years 
ago because of its inherent limitations, such as its inability to learn 
concepts that are not linearly-separable [Minsky88]. Nevertheless, 
it performs quite well in these experiments. Except on NETtalk 
and in the presence of imperfect training data, the accuracy of 
the perceptron is hardly distinguishable from the more complicated 
learning algorithms. In addition, it is very efficient.” They go on to 
say “Regardless of the reason, data for many “real” problems seems 
to consist of linearly separable categories. Since the perceptron is a 
simple and efficient learning algorithm in this case, using a perceptron 
as an initial test system is probably a good idea.” Similarly, in 
[6], it is reported that although “in every case a logistic solution 
was found that exceeded the performance of solutions posed using 
different underlying models . . . linear classifiers (with the assumption 
of a normal distribution) gave good performance in all cases except 
the thyroid experiment.” Other experiments that we have performed, 
involving mathematically generated data intended to simulate the 
problem of lung tumor recognition in computerized tomography [9], 
also tend to confirm this conclusion. However, the nature of those 
data seems so particularly suited for classification by a single linear 
separator that we consider it not worthwhile to report on the details 
of those experiments. 

Rather interestingly, our initial experience with the WBCD was 
also similar. Using the chronologically earlier items in the data 
as a training set and those obtained later as the testing set, we 
found that using a low value of I< outperformed the version of 
the method that completely separated the training set. However, the 
full analysis reported here decisively shows that the initial result 
was an aberration. We found that for the WBCD, a classifier based 
on complete separation of the confirmed normals and abnormals is 
superior in a statistically very significant sense to others using fewer 
hyperplanes for classification. This experience confirms the need for 
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statistically valid analysis, as opposed to anecdotal data, in choosing 
a classifier. 

However, one should be careful not to confuse statistical signifi- 
cance with significance for the application at hand. We note that even 
the classifier based on a single (optimal) linear separator has accuracy 
0.959, i.e., it misclassified only 4.1% of the cases. It can be further 
adjusted to meet the special requirements of the medical problem 
that we are trying to solve. For example, if a false positive only 
results in further (but more invasive) medical tests but a false negative 
would lead to not treating a cancer, it would be better to move the 
threshold in (21) to bias towards not misclassifying abnormals, even 
if the overall accuracy decreases as a result. Similar adjustments 
can of course be made to the piecewise-linear classifier, and the 
methodology described above can be applied to test the methods with 
the revised figure of merit in mind. In any case, one should carefully 
distinguish in experiments such as those described here between the 
estimated size of the difference in the performance of techniques 
(in our case 0.990 accuracy versus 0.959 accuracy) and the statistical 
significance of the conclusion that one method is better than the other 
(in our case 0.001, meaning that if the two methods were equally 
good, then experiments such as we have performed would indicate 
such superiority of performance less than once out of 1000 times). 

We observe that if fewer hyperplanes are used, the classification 
will be less expensive. Our recommendation, therefore, is that for 
a new problem, piecewise-linear classification should be compared 
with classification based on an optimal linear separator, with the 
latter method being the method of choice until evidence indicates 
otherwise. Furthermore, in choosing the stopping point Ii for the 
piecewise-linear classification algorithm, the technique described in 
Section IV should be used. For the case of WBCD, this technique 
indicates that the stopping point should be based on the number of 
hyperplanes required to completely separate all confirmed normals 
and abnormals, but it is by no means certain that this conclusion 
would be valid for data sets obtained for other applications. There 
has been some discussion in the literature as to whether or not 
“overfitting” the training set causes a problem in the performance of 
a classifier [8 ] ,  but in any case, one should try to use the minimum 
number of hyperplanes consistent with optimal performance on the 
currently confirmed cases according to an appropriate measure (such 
as accuracy). 

There are techniques in the literature that appear to be compet- 
itive alternatives to piecewise-linear classification. An example is 
composite classification [lo]. One way of using such an approach 

in conjunction with what is described above is to use a few (one 
or two, say) pairs of hyperplanes produced by our procedure for 
classification of (most) points and use a more expensive classifier 
with some desirable properties regarding the probability of error (such 
as the nearest-neighbor decision rule [2]) for those points for which 
this partial piecewise-linear classification fails. Such alternatives may 
turn out to have superior performance to the methods discussed in 
this paper. Although experimental comparison of all existing methods 
is a far too time consuming (and not particularly exciting) task, 
those who have faith in a particular classification method can use 
the methodology described in this paper to validate their claims and 
to assign statistical significance to their results. 
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