
*Corresponding author.
E-mail address: dhawan@adm.njit.edu (A.P. Dhawan).

Pattern Recognition 34 (2001) 1469}1482

Fuzzy convex set-based pattern classi"cation for analysis
of mammographic microcalci"cations

Wojciech M. Grohman, Atam P. Dhawan*

New Jersey Institute of Technology, Chair, Elect. & Comp. Engineering, University Heights, Newark, NJ 01702, USA

Received 4 October 1999; accepted 2 May 2000

Abstract

There are many di!erent criteria for the comparative analysis of pattern classi"ers. They include generalization ability,
computational complexity and understanding of the feature space. In some applications such as the medical diagnostic
systems it is crucial to use reliable tools, whose behavior is always predictable, so that the risk of misdiagnosis is
minimized. In such applications the use of the popular feedforward backpropagation (BP) neural network algorithm can
be seen as questionable. This is because it is not inherent for the backpropagation method to analyze the problem's
feature space during training, which can sometimes result in inadequate decision surfaces. A novel convex-set-based
neuro-fuzzy algorithm for classi"cation of di$cult-to-diagnose instances of breast cancer is described in this paper. With
its structural approach to feature space the new method o!ers rational advantages over the backpropagation algorithm.
The classi"cation performance, computational and structural e$ciencies are analyzed and compared with that of the BP
network. A 20-dimensional set of `di$cult-to-diagnosea mammographic microcalci"cations was used to evaluate the
neuro-fuzzy pattern classi"er (NFPC) and the BP methods. In order to evaluate the learning ability of both methods, the
relative size of training sets was varied from 40 to 90%. The comparative results obtained using receiver operating
characteristic (ROC) analysis show that the ability of the convex-set-based method to infer knowledge was better
than that of backpropagation in all of the tests performed, making it more suitable for use in real diagnostic
systems. � 2001 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

Keywords: Neural networks; Pattern classi"cation; Convex sets; Breast cancer; Mammography

1. Introduction

The pattern recognition systems such as BP, radial
basis function (RBF) networks or of k-nearest-neighbor
(KNN), which use crisp decision surfaces often su!er
from low immunity to noise in the training patterns. To
address this issue and e!ectively improve their system's
performance some researchers have introduced a combi-
nation of pattern recognition neural networks and vari-
ous concepts from the fuzzy set theory. The example
ideas include intended improvement of fuzzy decision
systems [1}8], incorporation of existing knowledge into

neural network architectures [6,9,10], improvement of
the system's performance on noisy input data [11],
allowing fuzzy input to the neural network [1}6,12], and
others [8,13,14]. In this work we introduce a novel pat-
tern recognition method NFPC, that incorporates the
fuzziness into the decision surfaces to further improve the
classi"cation performance. The new method's perfor-
mance was compared with that of a leading implementa-
tion of the backpropagation algorithm. The results of this
comparison are reported in this paper.
The main motivation behind the use of the new algo-

rithm is its structural approach to pattern recognition.
Unlike the popular and widely used [1}5] backpropaga-
tion neural network which uses no information about
pattern points position in the feature space in any explicit
way, the NFPC training method "rst identi"es clusters
within the training data, and then constructs the actual
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Fig. 1. Neuron model with linear synapses.

network architecture. This feature signi"cantly increases
the robustness of the new approach, as the danger of
falling into local minima of the error function is mini-
mized, and pattern classi"cation is based on the real data
clusters. With the only assumption being that the identi-
"ed data clusters are convex, the presented method re-
tains the greatest advantage of backpropagation and
other feedforward neural networks, i.e. their #exibility.
The assumption made about the convexity of identi"ed
clusters is not a strict requirement, since even concave
clusters can be represented as a union of a "nite number
of convex ones. The input to the classi"er is crisp and the
output is based on the values of fuzzy membership func-
tions that partition the input space. This allows for high-
er immunity to noise in the training patterns and is
designed to improve the classi"er's performance. An ad-
ditional method's bene"t is its self-determined network
structure, which eliminates the need for heuristical guess-
ing of the number of neurons and layers common to all
backpropagation networks.
At the present time mammography associated with

clinical breast examination is the only reliable mass-
screening method for breast cancer detection [15}17]. In
most cases the breast cancer diagnosis based on mammo-
graphic images is a routine task for an experienced phys-
ician, however there are instances where the prognosis
cannot be easily made. Since there are over 50 million
women over the age of 40 at risk of breast cancer, and
approximately 144,000 new breast cancers per year are
expected to be diagnosed in the United States alone [16],
the absolute number of di$cult-to-diagnose cases is quite
signi"cant.
It has been empirically recognized that certain kinds of

microcalci"cations are associated with a high probability
of cancer [15]. However, the analysis of the mammo-
graphic images is usually di$cult and the results are
ambiguous. The di$culty in the interpretation of micro-
calci"cations leads to a signi"cant increase in the number
of biopsy examinations. At present, only one out of "ve
biopsies recommended on the basis of the microcalci"ca-
tion sign yields positive results. A reduction in the
false-positive call rate will not only reduce health care
costs by avoiding nonproductive biopsies, it will also
provide women better patient care. Reduction in the
false-positive rate must be achieved while maintaining
sensitivity [18]. The recent introduction of pattern recog-
nition methods has made the computerized image analy-
sis possible. Such analysis, designed to help decision
making for biopsy recommendation and diagnosis of
breast cancer, shall be of signi"cant value to improve the
true-positive rate of breast cancer detection. This can
lead to the decrease of the false-positive rate, thus e!ec-
tively reducing the health care costs.
Section 2 describes the architecture and construction

process of the NFPC. Section 3 presents the experimental
results on the breast cancer data [18] and it is followed

by discussion and conclusion in Sections 4 and 5, respec-
tively. The basic concepts from convex set theory are
presented in the appendix.

2. Method description

2.1. Theoretical background and derivation of NFPC
construction method

The main idea behind the described method comes
from the basic properties of feedforward arti"cial neural
networks. Any layer of a feedforward network performs
partitioning of its d-dimensional input feature space into
a speci"c number of subspaces that are always convex
and which number can be estimated [19]. This is regard-
less of the training algorithm or the neural function
f (�) used. The only requirement is that the connection
weights w

�
are linear, i.e., that the relationship between

the layer's inputs x
�
and the post-synaptic signal � pro-

cessed by the neural function is of a form

�"

�
�
���

x
�
w
�
#w

�
. (1)

Most popular feedforward networks, including radial
basis function and backpropagation, satisfy this require-
ment. The corresponding, general neuron architecture is
shown in Fig. 1.
For �"0 (or any other constant), the synaptic equa-

tion (1) represents a (d!1)-dimensional hyperplane H in
the d-dimensional input space separating two regions
de"ned by the connection weights w

�
[21]:

(H : �"0)N�H:
�
�
���

x
�
w
�
#w

�
"0�. (2)

Each network layer comprises many such hyperplanes,
which by intersecting with one another create a "nite
number of the aforementioned convex subspaces. There-
fore, there is a direct relationship between the connection
weight values and the obtained d-dimensional convex
subspaces. The process of network training could be seen
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Fig. 2. Architecture of the NFPC.

as the attempt at "nding an optimal dichotomy of the
input space into these convex regions. Moreover, the
relationship goes both ways, i.e. proceeding in the reverse
order, one might say that "nding the optimal dichotomy
of the input space into convex subspaces is equivalent to
network training.
As a result of the above reasoning, the following pro-

cedure is proposed: in the feature space one separates the
given number of training points from all categories. It is
achieved by dividing them into homogeneous (containing
only points from one category), non-overlapping, closed
convex subsets, and then placing separating hyperplanes
between neighboring subsets from di!erent categories.
This completes the design of a network hyperplane layer.
At that point, there are a number of possible procedures
of utilizing the created layer [20]. In any case, since the
hyperplane separation of the obtained subsets results in
creation of the homogenous convex regions, the con-
secutive network layer is to determine to which region
a given input pattern belongs. In our approach a fuzzy
membership M

�
function is devised for each created

convex subset ( f"1, 2,2,K). The classi"cation deci-
sion is made by the output layer based on the `winner-
take-alla principle. The resulting categoryC is the convex
set category with the highest value of membership func-
tion for the input pattern. The structure of the proposed
neuro-fuzzy pattern classi"er is shown in Fig. 2.
Summarizing, our neuro-fuzzy pattern classi"er design

method includes three stages: convex set creation, hyper-
plane placement (hyperplane layer creation), and
construction of the fuzzy membership function for each
convex set (generation of the fuzzy membership
function layer).

(1) Convex set creation: There are two requirements for
the convex sets: they have to be homogeneous and non
overlapping. To satisfy the "rst condition, one needs to

devise a method of "nding one-category points within
another category's hull. Thus, two problems can be de-
"ned: 1* how to "nd whether the point P lies inside of
a convex hull CH of points; 2 * how to "nd out if two
convex hulls of points are overlapping. The second prob-
lem is more di$cult to examine because hulls can be
overlapping over a common (empty) space that contains
no points from either category. This problem can be
de"ned as a generalization of the "rst one [20], and the
"rst condition can be seen as a special case of the second
requirement, when one of the convex sets is a single point.
An interesting discussion on the "rst problem and its
complexity can be found in Refs. [22,23]. The complexity
of the second problem is far greater. For more detailed
analysis of the problem, see Ref. [20].
In real-world situations, when training samples are not

completely noise-free it would not be advisable to insist
on high accuracy of solutions to problems 1 and 2. In
such a case a compromise between computational e$-
ciency and accuracy should be reached.With this in mind
a new algorithm for solving problem 1 is proposed below.
It is based on another property of convex sets, described
by the separation theorem [24], which states that for two
closed non-overlapping convex sets S

�
and S

�
there

always exists a hyperplane that separates the two sets
* separating hyperplane.

Algorithm A1. Checking if the point P lies inside of
a convex hull CH

1. Put P in Origin.
2. Normalize points of CH (the vectors <"

(v
�
, v

�
, 2, v

�
) from the origin).

3. Find min and max vector coordinates in each dimen-
sion.

4. Find set E of all vectors < that have at least one
extreme coordinate.

5. Take their mean and use it as projection vector
�:

�"(v�
�
� ∀v

�
3E).

6. Set a maximum number of allowed iterations (usu-
ally"2n).

7. Find a set ;"(u
�
, u

�
, 2, u

�
) (where m)n)

of all points in CH that have negative projection on
�.

8. If ; is empty (P is outside of CH) exit, else proceed
to 9.

9. Compute coe$cient �:

�"��;� ,

;� "
1

m

�
�
���

ui.
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10. Calculate correction vector �� by computing all of
its k-dimensional components ���:

�
;� �O0N���"

�
;� �

d

;� �"0N���"
�
d

� , k"1, 2, 2, d

where d is the data's dimension.
11. Update �: �"�!� ) ��, where �'1 is a training

parameter.
12. if iteration limit exceeded exit (assume P inside of

CH), otherwise go to 7.

The value of the training parameter � should be close
to 1, so even the points lying outside but close to the hull
can be found. Heuristically, it has been found that the
values of � should fall in the range 1.0001(�(1.01.
They are, however, dependent on the precision of the
training data and should be adjusted accordingly.
The principal idea behind the algorithm is to "nd the

hyperplane (de"ned by its orthogonal vector �) separat-
ing P and CH. If such a hyperplane is found within
a certain amount of iterations, the point is de"nitely
outside of CH. If the hyperplane has not been found, it is
assumed that P is inside.
Now, having found the solution to problem 1, we can

propose a method for constructing convex subsets:

Algorithm A2. Convex subset creation

1. Select one category. Consider the set of all its training
points. This is a positive set of samples. The training
points from all the remaining categories constitute
a negative set. Both sets are in d-dimensional linear
space ¸. Mark all positive points as `not yet takena
and order them in a speci"c way. For example, choose
an arbitrary starting point in the input space and
order all positive points according to their Euclidean
distance from that point. Use an index array � to
store the order.

2. Build the convex subsets.
Initialize current subset S by assigning to it the "rst
point in �. Loop over ordered positive category
points (in �) until there are no more points remaining.
Consider only points that have not yet been `takena:

(a) Add the current point P to the subset S.
(b) Loop over points from negative category. Con-

sider only negative points that are closer than P to
the middle of the current subset. Using Algorithm
A, look for at least one negative point inside of conv
S. If there is one, disregard the latest addition to S.
Otherwise mark the current point P as `takena.

(c) Update �. Reorder the `not yet takena positive
category points according to their distance from
the mean of points in the current subset.

3. If all points in the category have been assigned to
a subset proceed to step 4, otherwise go back to step
2 and create the next convex subset. The starting
point is the "rst `not yet takena point in the list.

4. Check if all categories have been divided into convex
subsets. If not, go back to step 1 and create subsets of
the next category.

In the step 2b it is not always necessary to use
Algorithm A1 for checking the presence of every single
negative point within the current convex subset. Once
a separating hyperplane is found for one negative point it
should be used to eliminate all other negative points that
lie on the opposite side of the hyperplane than the convex
subset, from the checklist. Thus, both the presented algo-
rithms should be used together in order to save computa-
tions. Using procedures A1 and A2 does not guarantee
that the constructed convex subsets are not overlapping,
since problem 2 is essentially not addressed. It is of no
signi"cance when the subsets are from the same category.
However, when they are not, this could result in linear
non-separability of the neighboring subsets. This might
seem as a drawback of the proposed solution since the
overall accuracy seems to have been compromised for the
bene"t of computational e$ciency. However, the results
of performed test show that this compromise is accept-
able, since the performance of the NFPC was equal, or
better than that of the backpropagation network classi-
"er * see Section 3. Not directly addressing problem
2 does not mean that the constructed subsets are always
overlapping. Contrarily, the more representative the
training set (i.e., greater number of training samples), the
smaller probability of the overlap, as the likelihood of
"nding a common empty space decreases. In reality, as
the obtained results for the tests performed show, see
Section 3, this approximation yields acceptable results
that are comparable to and often better than that of other
methods.
In Ref. [23] the authors proposed a di!erent method

for solving problem 1* separating hyperplane detection
(SHD) algorithm. As opposed to the approximate pro-
cedure A1, SHD always provides a de"nite answer. How-
ever, as the results in Section 3 show, its computational
complexity is always higher. This is because the separat-
ing hyperplane is not found, only detected, so no negative
points can be eliminated from the checklist in step 2b of
Algorithm A2.
(2) Initial subset point selection: The presented algo-

rithm requires initialization in the form of starting points
for convex subsets from each category (step 1 of Algo-
rithm A2). There are many possible ways of "nding these
starting points. In the simplest case they may be chosen
randomly or by taking the mean of all category points'
coordinates. In the conducted experiments these starting
points for each category were obtained by resolution
coarsing, which was performed to place the starting point
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Fig. 3. Resolution coarsing.

in an area with the greatest concentration of that particu-
lar category's points. The concept is explained by the
example in Fig. 3, where the starting point for the black
category is determined.
Every dimension was divided into a speci"c number of

bins, or intervals. These intervals are created "rst by
taking the distance, along that particular dimension,
from the minimum coordinate value of all points to the
maximum coordinate value, and then dividing this dis-
tance by a prede"ned number, which is 3 in our example.
All point coordinates that fall within one of the bins are
changed to the coordinate value of the middle point for
that particular bin. Thus, in our example in Fig. 3, all
points with x coordinates from 1 to 3 are assigned x coor-
dinate value of 2, all points from 3 to 5 are assigned 4, and
all points from 5 to 7 are assigned 6. Correspondingly,
points with y coordinates from 0.5 to 2.5 are assigned
1.5y coordinate value, etc. Next, a number of occurrences
for each modi"ed point is counted. The point that is
repeated most is chosen as a starting point for the cat-
egory. In our example it would be (2, 3.5).
(3) Placing hyperplanes * hyperplane layer creation:

Once the convex subsets have been found, it is assumed
that they are not overlapping, so that only one hyper-
plane is needed to separate two neighboring subsets. The
program loops over subsets from all categories and pla-
ces a hyperplane between two sets from di!erent cate-
gories that have not yet been separated by existing hy-
perplanes. Thus, a number of hyperplanes can vary de-
pending on the training set. Several algorithms can be
used to place a separating hyperplane, however it has
been proven [25] that backpropagation with batch train-
ing performs better than other methods when the two
classes are linearly separable. Since we are primarily
dealing with linearly separable convex subsets, back-
propagation with batch training was used in our imple-

mentation. A hyperplane was represented by a single
neuron trained to output a positive value (#1) for one
category and a negative value (!1) for the other. The
NPFC hyperplane layer comprises a set of all hyper-
planes needed to fully separate all convex subsets from
di!erent categories.
(4) Fuzzy membership function construction: The placed

hyperplanes de"ne the convex regions trained from the
presented samples. These created regions are the bases
for constructing fuzzy membership functions, which rep-
resent the point's relative membership in a given convex
subset, rather than in a category. It means that for a
single point the sum of its membership values for di!er-
ent convex clusters is bound from below * it can never
be negative * and from above by a total number of
convex subsets for all categories. The utilized fuzzy mem-
bership function M

�
has to be #exible to re#ect the true

shape of the convex subset with the greatest precision
possible. In our case it was de"ned for each subset
f ( f"1, 2, 2 , K) as follows:

M
�
(x)"¸

��
��

	
���



�
, 


�
"

1

(1#e�����
x)
, (3)

where ¸
�
is the number of separating hyperplanes for the

subset f, �
�
the ith separating hyperplane function for the

subset, in the vector form, x the network's input vector in
the augmented form and �

��
the steepness (scaling) coef-

"cient for the ith hyperplane in the subset f.
The value of �

��
depends on the depth of convex subset

f, as projected onto the separating hyperplaneH
�
(de"ned

by �
�
):

�
��

"

!log((1!�)/�)

��

, 
��

"

1

n

�
�
���

�
�
x
�
, (4)

where n is the number of training points in the covex
subset f, �

�
the ith hyperplane equation in the vector

form, 
��

the depth of the convex subset f, as projected
onto ith hyperplane, x

�
the augmented coordinate vector

of the jth point in the subset, and � the center value of the
membership function.
Since the sigmoidal function in Eq. (3) is continuous

and only reaches the value of 1 at in"nity, the resulting
maximum value of M

�
is less than 1. In practice, the

maximum possible value is controlled by the center value
�, which is the goal membership value for a point with the
mean projection value onto H

�
for the entire subset. In

the performed tests � was set to 0.99.
Other versions of fuzzy membership functions are pos-

sible. An alternative approach is represented by two
examples shown in Eqs. (5) and (6) below:

MH
�
(x)"¸

��
��

	
���



�
, 


�
"

1

(1#e�����
x)(1#e���� ���

x	��� �)
,

(5)
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Fig. 4. Fuzzy membership function neuron.

Fig. 5. Convex set-based separation of two categories.

where ¸
�
is the number of separating hyperplanes for the

subset f, �
�
the ith separating hyperplane function for the

subset, in the vector form, x the networks input vector in
the augmented form, �

��
the steepness (scaling) coe$cient

for the ith hyperplane in the subset f, de"ned by Eq. (4)
and �

��
the width of the subset f as projected on the ith

hyperplane.

M
�

�
(x)"¸

��
��

	
���



�
,



�
"

1

�2��
��

exp�
!(�

�
x!(�

��
/2))�

2��
��

�, (6)

where ¸
�
is the number of separating hyperplanes for the

subset f, �
�
the ith separating hyperplane function for the

subset, in the vector form, x the network's input vector in
the augmented form, �

��
the fuzziness coe$cient for the

ith hyperplane in the subset f, and �
��

the width of the
subset f as projected on the ith hyperplane.
Both of these membership functions were designed to

limit the depth of each subset as seen from the separating
hyperplane. This was intended to minimize the in#uence
of the resulting open convex regions over the space where
no training points were located. The fuzzy membership
function with the normal distribution version in Eq. (6)
does not preserve the shape of the original convex re-
gions as well as does the sigmoid-based one in Eq. (5).
Therefore, only the later one was chosen for evaluation in
the experiments. However, as the results show, this im-
plementation did not perform as well as the one from
Eq. (4).
The structure of the designed fuzzy membership func-

tion neuron is shown in Fig. 4. Scaling and multiplication
stages are represented by Eqs. (4) and (3), respectively.
The input to the neuron is the hyperplane layer, created

as described in the previous section. The neuron's output
is the fuzzy membership function M

�
for convex subset f.

The neuron structure for fuzzy membership functions
from Eqs. (5) and (6) is analogous.
(5) Winner-take-all output: The output Out of the classi-
"er is the category C of the convex set fuzzy membership
function M

�
that attains the highest value for the speci-

"ed input pattern x, i.e.:

(Out"C �∀ 1)f )K, M
�
(x)(M

�
(x), M

�
oC, fOi),

where Out is the output of the classi"er, x the input
pattern, K the number of convex sets obtained during
training (number of fuzzy function neurons in the fuzzy
membership function layer), M

�
the highest fuzzy mem-

bership function value for the input x, and C the category
of convex subset used to construct membership function
M

�
.
In other words, the output is based on the winner-

take-all principle, with the convex set category corre-
sponding to M

�
. determining the output.

A decision surface for each category can be determined
by the fuzzy union of all of the fuzzy membership func-
tions for the convex subsets belonging to this category.
Thus, if the decision surface for a particular category can
be de"ned as:

(M

������

(x)"max(M
�
(x))�∀i,M

�
3category),

where M

������

(x) is the decision surface for the category,
and M

�
the fuzzy membership functions for convex clus-

ter i.
To illustrate the design process consider a hyperplane

placement shown in Fig. 5. The hyperplanes were placed
to separate two convex subsets of the black category
from the convex subset of the white category.
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Fig. 6. Fuzzy membership function M
�
(x) for the subset �1 of

the black category.

Fig. 7. Fuzzy membership function M
�
(x) for the subset �2 of

the black category.

Fig. 8. Fuzzy membership function M
	
(x) (decision surface) for

the white category membership.

Fig. 9. Resulting decision surface M
���
�

(x) for the black cat-
egory membership function.

Fig. 10. Fuzzy membership function MH
�
(x) for the subset �1 of

the black category.

Figs. 6 and 7 show the constructed fuzzy membership
functions M

�
(x) and M

�
(x) for black category subsets.

Fig. 8 illustrates the membership function M
	
(x) for the

white category. The resulting decision surface M
���
�

(x)
for the black category is shown in Fig. 9. The decision
surface M

����
(x) for the white category is identical with

M
	
(x), since there is only one white points cluster.

Figs. 10 and 11 show the constructed fuzzy member-
ship functions MH

�
(x) and MH

�
(x) for black category sub-

sets. Fig. 12 illustrates the membership function MH
	
(x)

for the white category. The resulting decision surface
MH

���
�
(x) for the black category is shown in Fig. 13. The

decision surface MH
����

(x) for the white category is identi-
cal with M

	
(x), since there is only one white points

cluster.
Note that even though constructed convex subsets of

training points are always closed, the resulting convex
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Fig. 11. Fuzzy membership function MH
�
(x) for the subset �2 of

the black category.

Fig. 12. Fuzzy membership functionMH
	
(x) (decision surface) for

the white category membership.

Fig. 13. Resulting decision surface MH
���
�

(x) for the black cat-
egory membership function.

regions that are the bases for fuzzy membership functions
may not be always closed.

3. Results

There are a number of non parametric classi"cation
methods available that could be used in the diagnostic
system. In their study Dhawan et al. [18] compared the
performance of k nearest-neighbor and backpropagation
network classi"ers. Additionally, an extensive analysis of
radial basis function (RBF) classi"er was performed in
Ref. [26]. The backpropagation network achieved sig-
ni"cantly higher classi"cation rates than the KNN and
RBF classi"ers and thus it was used as a reference
method for comparative performance evaluation of the
NFPC. Several backpropagation training algorithms
available in the Matlab neural network toolbox were
analyzed. They included Powell}Beale conjugate gradi-
ent BP, Fletcher}Powell conjugate gradient BP,
Polak}Ribiere conjugate gradient BP, gradient descent
BP, gradient descent with momentum BP, gradient de-
scent with adaptive learning rate BP, Levenberg}
Marquardt BP, and others. In all tests the backpropaga-
tion network with momentum and the adaptive learning
rate, combined with batch training [27] performed best
and was consequently used as a standard reference
method.
The data set used for evaluation of the methods repres-

ents a set of 191 di$cult-to-diagnose cases of mammo-
graphic microcalci"cations selected from the database of
more than 18,000 mammograms. There are 128 benign
and 63 malignant instances. The selected images were
digitized and the gray-level subimages containing the
microcalci"cation areas were extracted and then
stretched to the gray-level range of 0}255. These nor-
malized gray-level subimages were used for feature ex-
traction using the second-order histogram statistics (10
features). In addition, wavelet packets were computed in
the regions containing the microcalci"cations. The en-
ergy and entropy features were computed for the decom-
posed Daubechies D



and D

��
wavelet packets for

Levels 0 and 1 (20 features). The segmentation of micro-
calci"cation regions was performed to obtain cluster
feature representation (10 features). From the set of all 40
features 20 were selected using a genetic algorithm (GA)
basedmethod. These features were used for classi"cation.
The list of used features is shown in Table 1.
The new neuro-fuzzy pattern classi"er was compared

with backpropagation using exactly the same training
and test sets. For backpropagation training a maximum
of 20,000 epochs were allowed. Two di!erent approaches
were used to constructing convex subsets * one
(NFPC1) using SHD, the other (NFPC2) using Algo-
rithm A1 to check for point inclusion in the convex set.
Two versions of fuzzy membership functions M

�
were
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Table 1
The extracted features selected for classi"cation of breast cancer
images

Feature no. Description

1 Entropy computed from the second order gray-
level histogram

2 The contrast feature of the second order gray-
level histogram

3 The mean of the second order gray-level histo-
gram

4 Themean of the di!erence second order gray-level
histogram

5 Energy for the D


wavelet packet at Level 0

6 Energy for the D


high}high wavelet packet at

Level 1
7 Energy for the D



high}low wavelet packet at

Level 1
8 Energy for the D



low}low wavelet packet at

Level 1
9 Entropy for the D



wavelet packet at Level 0

10 Entropy for the D


high}high wavelet packet at

Level 1
11 Entropy for the D



high}low wavelet packet at

Level 1
12 Entropy for the D



low}low wavelet packet at

Level 1
13 Energy for the D

��
wavelet packet at Level 0

14 Energy for the D
��

low}low wavelet packet at
Level 1

15 Entropy for the D
��

high-high wavelet packet at
Level 1

16 Entropy for the D
��

low}high wavelet packet at
Level 1

17 Number of microcalci"cations
18 Standard deviation of number of gray levels per

pixel
19 Standard deviation of gray levels
20 Average distance between calci"cation and center

of mass

implemented resulting in four neuro-fuzzy classi"ers. The
ones denoted with the asterik (*) used Eq. (5) and the ones
without it used Eq. (3). In tables pertaining to computa-
tional complexity and number of convex subsets no dis-
tinction between the two di!erent membership function
implementations is made. This is because the di!erence in
required computations was negligible and the number of
convex subsets was not dependent on the utilized convex
set fuzzy membership function. All "ve networks were
trained with two outputs for benign and malignant cat-
egory. The algorithms' ability to infer the knowledge was
examined by increasing the ratio (from 40 to 90%, with
a step of 10%) of the number of training to total samples,
randomly chosen from the population of 191. Each test
was run 500 times, giving a total of 3000 runs for an

algorithm. For each run the ROC curves were computed
from the true and false-positive rates of classi"cation.
The ROC curve provides estimates of probabilities of
decision outcomes of true-positive and false-positive de-
cisions for any and all of the decision criteria a system
might have. In this case the decision criterion used for all
classi"ers was the threshold at the malignant output
node of the classi"er above which a test case was classi-
"ed as malignant. The threshold was varied from !1 to
1, with a step of 0.1, for the backpropagation and from
0 to 1, with a step of 0.05, for the NFPC. In total there
were 21 points for each "tting of the ROC curve. The best
50 of the ROC curves that gave chi-square goodness-of-
"t parameters that were not signi"cant at the 0.05-prob-
ability level, with standard deviation of the "t below 0.08
were used to compute classi"cation rates. In accordance
with the results in Ref. [18] the best results for back-
propagation network were obtained with 30 hidden layer
neurons. The obtained results are shown in Tables 2 and
3, representing mean and maximum classi"cation rates.
Table 4 shows a number of ROC "ts that met required
criteria. Table 5 shows the mean ROC area when best
50% instead of 50 curves were used.
As the relative size of the training set increases the

network's classi"cation rate should also increase. This
however can happen only when the training set provides
more information and the additional samples are not
redundant, i.e., they come from other, previously not
identi"ed convex clusters. To illustrate the change in
information content for the training set, Table 6 shows
average number of convex clusters for both categories.
The computational complexity of the new NFPC and

the used implementation of the backpropagation algo-
rithm was evaluated and the results, as reported by
Matlab, are shown in Tables 7 and 8.

4. Discussion

The newmethod proposed in this paper was compared
with the leading implementation of the backpropagation
algorithm. The large number of performed tests for each
classi"er ensured the accuracy of the comparison be-
tween di!erent classi"ers. The experiments showed that
NFPC performed better than BP neural network classi-
"ers in almost every test, as illustrated by Tables 2}5. The
NFPC training method's ability of converging to a valid
result is illustrated by Table 4, where the number of valid
classi"cation results obtained from each classi"er is
shown. Only runs with area under the ROC curve greater
than 50% and with the standard deviation of "t less than
0.08 were considered valid. The average number of
achieved acceptable results for the NFPC was over 60%
higher than for backpropagation network. Since identi-
cal training sets were used to train all classi"ers, it can
be inferred that the learning capability of the NFPC
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Table 2
Mean ROC area for the "ve classi"ers

40% 50% 60% 70% 80% 90%

NFPC1H 69.50% 71.63% 73.08% 75.10% 81.40% 83.37%
NFPC2H 67.74% 67.93% 69.59% 69.55% 77.06% 84.79%
NFPC1 70.59% 73.41% 74.97% 76.54% 80.69% 88.37%
NFPC2 69.56% 74.20% 75.90% 74.05% 78.19% 87.17%
BPNN 63.81% 67.89% 70.43% 72.67% 75.45% 81.78%

Table 3
Maximum ROC area for the "ve classi"ers

40% 50% 60% 70% 80% 90%

NFPC1H 85.62% 86.96% 90.64% 97.83% 100% 100%
NFPC2H 86.68% 85.89% 83.77% 100% 92.31% 100%
NFPC1 85.30% 87.92% 86.64% 92.05% 100% 100%
NFPC2 84.90% 90.66% 94.21% 100% 90.49% 100%
BPNN 74.62% 77.46% 78.44% 84.68% 90.42% 100%

Table 4
Number of successfully computed ROC curves

40% 50% 60% 70% 80% 90%

NFPC1H 209 217 175 127 155 114
NFPC2H 210 200 189 106 140 101
NFPC1 217 237 217 145 196 155
NFPC2 223 223 193 130 201 149
BPNN 106 123 123 132 120 71

Table 5
Mean ROC area when best 50% curves were used

40% 50% 60% 70% 80% 90%

NFPC1H 64.55% 66.08% 68.03% 72.81% 77.05% 81.95%
NFPC2H 63.35% 63.70% 65.37% 69.07% 74.55% 84.54%
NFPC1 65.67% 67.75% 69.73% 74.02% 76.27% 83.52%
NFPC2 64.78% 68.51% 71.40% 72.17% 74.01% 82.64%
BPNN 63.55% 66.67% 69.07% 70.68% 73.99% 86.41%

Table 6
Average number of convex subsets for NFPC

40% 50% 60% 70% 80% 90%

Benign 1.88 2.09 2.31 2.52 2.75 3.04
Malignant 1.98 2.12 2.29 2.45 2.70 2.82
Total NFPC1 3.86 4.21 4.60 4.98 5.45 5.87
Benign 2.43 2.79 3.10 3.41 3.65 3.86
Malignant 2.35 2.68 2.97 3.25 3.51 3.82
Total NFPC2 4.78 5.46 6.07 6.66 7.17 7.68

training algorithm was greater than that of the best
backpropagation method available.
The NPFC construction method utilizes an algorithm

that checks for point inclusion inside of a convex set. Two
versions of the algorithm were used* Algorithm A1 and
SHD. An approximate AlgorithmA1 requires fewer com-
putations but produces larger number of convex subsets
(see Table 6), e!ectively increasing the size of the

classi"er. However, the classi"cation rate of the NFPC
designed using Algorithm A1 or SHD does not change
signi"cantly. This is a proof to the method's overall
robustness, since even when the learned convex subsets
are not accurate, classi"er's performance is not a!ected.
The introduced algorithm is a constructive method

that continues to expand the classi"er's structure until all
training samples are separated in the feature space.
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Table 7
Mean number of #oating point operations (�10�)

40% 50% 60% 70% 80% 90%

Set creation 0.0425 0.1098 0.2312 0.4814 0.9107 1.6919
Separation 0.0576 0.0760 0.0954 0.1168 0.1439 0.1763
Total NFPC1 0.1001 0.1858 0.3266 0.5981 1.0546 1.8682
Set creation 0.0402 0.0916 0.1748 0.3017 0.4477 0.6683
Separation 0.0623 0.0877 0.1166 0.1511 0.1865 0.2268
Total NFPC2 0.1025 0.1794 0.2914 0.4528 0.6343 0.8951
BPNN 1.8735 2.4607 3.3889 4.2499 5.4922 6.6037

Table 8
Max number of #oating point operations (�10�)

40% 50% 60% 70% 80% 90%

Set creation 0.0794 0.2095 0.4474 0.8968 1.5555 2.7161
Separation 0.0875 0.1144 0.1354 0.1709 0.2120 0.2419
Total NFPC1 0.1485 0.3203 0.5484 1.0231 1.7086 2.8737
Set creation 0.0937 0.3245 0.4608 0.6674 1.4373 2.1125
Separation 0.0947 0.1298 0.1786 0.2273 0.2867 0.3267
Total NFPC2 0.1692 0.4349 0.5554 0.8404 1.6220 2.3125
BPNN 4.7792 5.9357 7.0338 8.2522 9.4091 10.6096

Table 9
Expected vs. real complexity * breast cancer data

40% 50% 60% 70% 80% 90%

Mean set creation 0.0402 0.0916 0.1748 0.3017 0.4477 0.6683
Estimate O(n�d) 0.6672 1.6987 3.4980 6.4484 10.9596 17.5043
Ratio estimate/mean 16.60 18.54 20.01 21.37 24.48 26.19

Therefore it always converges to a solution. The inherent
structural approach to (convex) clustering data improves
the algorithm's chances of obtaining valid solutions, as it
was demonstrated by the experimental results.
The computational complexity of the entire method

depends predominantly on the complexity of Algorithms
A1 and A2. In Algorithm A1, step 7 has the most decisive
impact on the total algorithm's performance, as its com-
plexity is O(nd). It is repeated 2n times, resulting in the
entire algorithm's complexity O(n�d). In Algorithm A2, it
is step 2 that determines overall complexity of the algo-
rithm. In the worst case, that step is repeated &O(N�)
times, where N is a number of training cases from all
categories. Thus, the maximum computations required
for the algorithm to complete is O(N�d). In reality, as
the results of the performed tests show, this complexity
is signi"cantly lower. If instead of Algorithm A1 SHD is

used, the method's expected complexity remains of the
same order.
Results shown in Tables 7 and 8 prove that the pro-

posed method's computational complexity is lower than
that for backpropagation training in every test per-
formed. Also, the number of hyperplanes in the hyper-
plane layer of the NFPC was always smaller than that of
used backpropagation network. The algorithm's com-
putational complexity is strongly dependent on the num-
ber of training samples, and only linearly dependent on
the data's dimensionality. The method's nature makes
a precise computation estimate di$cult, and as it is
expected, the cluster structure signi"cantly in#uences the
complexity. Table 9 illustrates the di!erence between
expected and measured computational complexity. It
shows the comparison of mean set creation time versus
its estimate. The mean set creation and estimate units in
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the corresponding tables are 10� #ops and 10 #ops. In
both tables second version of the NFPC construction
algorithm (using Algorithm A1) was used for compari-
son. The method performed 16.6}26 times faster than the
estimates. The increase in the estimate/mean ratio with
increasing size of the training set suggest that the real
computational complexity of the algorithm is smaller
than O(N�d).

5. Conclusion

The introduced method constructs a neuro-fuzzy pat-
tern classi"er by identifying convex subsets of pattern
points in the feature space. It provides a clear theoretical
basis for understanding the signi"cance of the feature
space and its contribution towards classi"cation. The
input to the system is a set of crisp feature vectors. The
training result is a pattern classi"er comprising a set of
fuzzy functions that re#ect the input pattern's degree of
membership in a number of convex subsets of the feature
space, identi"ed during the NFPC training stage. The
proposed training procedure is completely automated
* function parameters are automatically computed from
statistical distributions of the data. Two di!erent ap-
proaches to construction of fuzzy membership functions
were tested: sigmoidal decision surfaces * (backpropa-
gation-like approach) and bell-shaped functions* clus-
ter-speci"c approach. For the tests performed the back-
propagation-like approach achieved considerably better
results than the cluster speci"c approach. In the process
of constructing convex sets two algorithms were used: A1
and SHD. Both performed equally well proving robust-
ness of the undertaken approach to clustering. In the
conducted tests the proposed training method performed
better than the leading implementation of the back-
propagation training method in terms of rate of conver-
gence and computational complexity. In most of the tests
the resulting neuro-fuzzy classi"er achieved higher classi-
"cation rates than the backpropagation network. Addi-
tionally, the convergence rate of the NFPC training was
shown to be higher than that of the leading implementa-
tion of backpropagation algorithm.

Appendix

De5nition A.1 (Line segment). If ¸ is a linear space,
X3¸, >3¸, the line segment X> joining X and > is the
set of all points of the form �X#�> where
�*0, �*0, �#�"1.

De5nition A.2 (Convex set). A set SL¸ is convex if for
each pair of points X3S, >3S it is true that X>LS,
where X> is the line segment joining X and >.

De5nition A.3 (Extreme point). If S is a convex set in ¸,
then a point X3S is an extreme point of S if no degener-
ate segment in S exists which contains X in its relative
interior. In other words, X lies on the end of every line
segment contained in S, that it belongs to. A set of
extreme points is a subset of the set of all boundary
points of S.

De5nition A.4 (Closed set). A set S is said to be closed if
every boundary point of S belongs to S.

De5nition A.5 (Convex set hull). The convex hull of a set
SL¸ is the intersection of all convex sets in ¸ containing
S, and it is denoted as conv S. The closed convex hull of
S is the intersection of all closed convex sets containing S.
Clearly S is convex if and only if conv S"S.

De5nition A.6 (Hyperplane). The equations

H: x
�
w
�
#x

���
w
���

#2#x
�
w
�
#w

�

"

�
�
���

x
�
w
�
#w

�
"0 (A.1)

and

H: �(x)"0 where �(x)"
�
�
���

x
�
w
�
#w

�

represent a (d!1)-dimensional hyperplane H in the
d-dimensional space. This hyperplane divides the space
into two separate regions, in one the value of �(x) is
positive* positive side of the hyperplane, and the other
in which the value of �(x) is negative* negative side of
the hyperplane.

Lemma A.1. As a consequence of the above dexnitions,
a convex hull of S is identical with the convex hull of
extreme points of S.

Lemma A.2. The coordinates of every point P laying inside
of the convex hull with vertices v

�
, v

�
, 2, v

�
can be ex-

pressed by the linear combination of the coordinates of the
hull's vertices, i.e.

P"

�
�
���

�
�
v
�

and
�
�
���

�
�
"1.

The proof of the above comes from the de"nition,
which states that for every point P in a convex set S there
exist two points X

�
and X

�
3S, such that [28]

P"�X
�
#(1!�)X

�
where �3�0, 1�.

1480 W.M. Grohman, A.P. Dhawan / Pattern Recognition 34 (2001) 1469}1482



Fig. 14. Convex, concave sets and convex hulls.

The "gure is convex when any two of its points can be
connected by a straight-line segment that lies entirely
within this "gure. Examples of convex and concave sets
are shown in Fig. 14a and b, respectively. Thus any circle,
rectangle, trapezoid or triangle is a 2-D convex set and
any sphere, cube or tetrahedron is a 3-D convex set. On
the other hand, any "gure with empty space engulfed in
it, is not convex in any dimension. Obviously, a single
point constitutes a convex set, but any set of more than
one points is never convex. However, any concave set can
always be turned into a convex set (its convex hull can be
created) by adding its convex de"ciencies. This concept is
illustrated in Fig. 14c, where the convex hulls of concave
sets from Fig. 14b are shown.
In d-dimensional space simplex is a d-dimensional con-

vex hull constructed on exactly d#1 points. It has exactly
d#1 facets and vertices (extreme points). When d"2 the
simplex is a triangle, when d"3 it is a tetrahedron, etc.
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