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Abstract—Moment has been one of the most popular techniques for image processing, pattern classifica-
tion and computer vision. In this paper, we propose two VLSI architectures for computing the regular
(geometric) moments and central moments. First, a one-dimensional systolic array is presented. In this
architecture, a dynamic time delay controller is used for obtaining the correct data flow. It takes
max(p, q)]n#n#2 time units to compute the moments of order (p#q). If there are k images, the
computational time will be k[max(p, q)]n#n#2]. Second, a two-dimensional architecture is presented.
It takes n#n#n!1#2#1"3n#2 time units to compute the moments of order (p#q). If there are
k images, the computational time will be (k!1)]2n#3n#2"2nk#n#2. The proposed approaches
are much faster than the existing ones. If a uniprocessor is used, the time complexity is (p#q) n2 , and if
there are k images, the computational time will be k (p#q) n2. Finally, a VLSI architecture is presented for
calculating the central moments. In this architecture, 3]n processing elements are used for calculating m
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. The results are sent to a two-dimensional structure for computing central moments. It takes
2n#3#max(p, q)#2#n#n!1#1"4n#max(p, q)#5 time units to finish the calculation of the
central moments. The important issue of VLSI design, algorithm partition, is also addressed. The basic idea
of this paper can be extended to compute other kinds of moments easily. We have applied the moments for
extracting the features of breast cancer biopsy images and classified them using neural networks. The 100%
classification rate has been achieved. ( 1998 Pattern Recognition Society. Published by Elsevier Science
Ltd. All rights reserved
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1. INTRODUCTION

The task of recognizing an object independent of its
position, size, or orientation is very important for
many applications of computer vision, pattern recog-
nition, and image processing. In every aspect of devel-
oping a pattern recognition system, we should always
carefully determine and extract the characteristics of
the pattern. When the pattern undergoes rotation,
translation, or scaling, the extracted features are more
crucial for the recognition result.

Many techniques have been developed to extract
features which are invariant under the changes in
position, size, or orientation of the images. In early
1960s, Hu(1) published the paper on the moment in-
variant for two-dimensional (2-D) pattern recognition
based on the methods of algebraic invariants. Since
then, many researchers applied the moment invari-
ants for pattern classification, image processing, and
image description successfully. Teh and Chin(2) evalu-
ated a number of moments for pattern recognition,
such as regular moments, Legendre moments, Zernike
moments, pseudo-Zernike moments, rotational mo-
ments, and complex moments. The properties of each
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moment were discussed. They demonstrated that the
invariance properties were perfect if the image was
noise free. However, when there was noise in the
image, the invariance properties were not as good as
expected. Also, higher-order moments were more sen-
sitive to the noise of images than lower-order mo-
ments. When the moments are not orthogonal, the
calculated moments will have redundant information,
thus cause less accuracy of representing images.
Teague(3) also summarized some well-known proper-
ties of the zero-order, first-order and second-order
moments. He discussed the problems of image recon-
struction from the inverse moments, and suggested
using the orthogonal moments to recover an image.
Yeaser and Psaltis(4) discussed the image recognitive
aspects of moment invariants. They focused the dis-
cussions on the information loss, suppression, and the
redundancy encountered in the complex moments.
Dudani(5) used the same set of moment invariants to
recognize different types of aircrafts. The similarity in
the template matching could be measured by correla-
tion coefficient and the sum of absolute difference.(6)
The experimental results were accurate even when the
object contained noise, but the computational cost
was very high. Extracting low-level features from an
image, such as gradient magnitudes, is another good
method. However, the computation cost is varied with



the size of image, and it is less accurate when the
image contains noise. Chou and Chen(6) proposed
a two-stage pattern matching method called ‘‘mo-
ment-preserving quantization’’ that reduced the com-
plexity of computation with quite a good accuracy.
They also proposed a low-cost VLSI implementation.
Their method could locate a 24]24 template in
a 64]64 search area 1.5 times faster than ‘‘thres-
holding the magnitude of the gradient’’ method, and
five times faster than ‘‘correlation coefficient’’ method.
In reference (7), Wong and Hall used a set of moments
which were invariant to translation, rotation, and
scale changes to perform the scene matching of radar
to optical images. Because of the invariance proper-
ties, it is easy to determine the threshold value, and an
efficient match can be accomplished. Casey(8) used the
second-order moments to specify the transformation
of the coordinate wave forms. The hand-printed char-
acters are transformed linearly in order to make
a more uniform appearance for recognition. By using
moments, the original pattern was mapped into
a variation-free domain, and the linear pattern vari-
ation of the hand-printed characters was removed. It
indicated that doing a moment normalization for the
hand-printed character patterns before scanning
would reduce the error rate. Cash and Hatamian(9)

used 2-D moments to extract the pattern features of
the optical character. This paper showed that the
pattern features extracted from the moments provided
good discrimination between characters, and
98.5—99.7% recognition rates were achieved for the
tested fonts. Ghoal and Mehrotra proposed a sub-
pixel edge detection method based on a set of ortho-
gonal complex moments, Zernike moments, of the
image(10). Although using moments invariants to ex-
tract the features of objects is efficient and easy, it is
lacking from the embedded noise of the objects. Due
to the orthogonal and the invariance property of the
Zernike moments, the subpixel edge detection was
more efficiently accomplished even when the noise
existed. Khotanzad and Hong(11) also proposed an
invariant image recognition method by using the Zer-
nike moments. Because the non-orthogonal moments
do not provide good accuracy for recovering the im-
ages from moments and are sensitive to noise, refer-
ence (11) used the Zernike moments, that were
orthogonal and invariant, to extract the features for
pattern recognition. They tested the proposed method
using clean and noisy images from a 26-class data.
Due to the orthogonality property of the Zernike
moments, the process of image reconstruction was
simplified and the feature selection was easy and prac-
tical. Sardana, Daemi, Sanders and Ibrahim(12) ap-
plied the second-order moments to extract the feature
vectors that could describe objects efficiently in an
n-dimensional space. Liu and Tsai(13) proposed a cor-
ner detection method based on the moments. The
moments of images were big factors of choosing the
threshold value. Belkasim, Shridhar and Ahmadi gave
a detail study of the efficiencies of different moment

invariants in pattern recognition applications.(14)
They proposed a new method for deriving Zernike
moments with a new normalization scheme, and ob-
tained a better overall performance even when the
data contained noise. Reeves, Prokop and An-
drews(15) presented a procedure using moment-based
feature vectors to identify a 3-D object from a 2-D
image recorded at an arbitrary angle and range. They
compared two methods: moments and Fourier de-
scriptors. They proposed a moment called standard
moment which was normalized with respect to scale,
translation, and rotation, and proved that the stan-
dard moment gave a slightly better result than the
Fourier descriptors.

The discussions above indicate that moments have
become one of the most popular and useful methods
for image processing, pattern recognition and com-
puter vision. We apply moments to extracting the
features of breast cancer biopsy images and the result-
ant features are input into neural networks for classi-
fications. A 100% classification rate has been
achieved. In order to reduce the computational time,
we will study the VLSI implementations of regular
moments and central moments. The proposed idea
can be extended to compute other moments easily.

1.1. Moments and moment invariants

The regular or geometric 2-D moments of order
(p#q) of an area A, for a continuous image f (x, y), is
defined as

M
pq
"P P

A

xpyqf (x, y) dx dy, (1)

where p, q3M0, 1, 2, 2N. From equation (1), we can
compute the moments of a digital image of area A as

M
pq
" +

(x,y)|A

xpyq f (x, y). (2)

In order to obtain translation invariant, we can first
locate the centroid of the image, that
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. (3)

We can define the central moments of a digital image
with area A, which are translation invariant:

k
pq
" +

(x,y)|A

(x!xN )p(y!yN )q f (x, y). (4)

From equations (2) and (4), we can see that it takes a
lot of additions and multiplications to compute the
regular moments and central moments. Many real-
world applications, such as industrial, military, envir-
onmental, medical and remote-sensing tasks, require
real-time processing. When the moments are used as
the features of the images with large sizes, the moment
computation can become the bottleneck of the entire
system. Several efficient methods have been proposed
to speed up moment computation. References (16, 17)
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discussed the superiority of boundary-based compu-
tation and proposed a simpler algorithm based on
Green’s theorem. They converted the double integrals
into a linear integral around the boundary of the
polygon. Both algorithms are only suitable for binary
images, i.e, f (x, y)3M0, 1N. Reference (16) did not in-
clude the time for finding the boundaries (vertices)
which could be the majority of the total computation
time. Reference (17) gave the consideration of the
entire computation and proposed to use an upper
triangular systolic structure to speed up the computa-
tion. But reference (17) did not include the time for
calculating the required linear transform matrix of the
algorithm. Chen(18) developed a parallel algorithm for
computing moments based on decomposing a 2-D
moment into vertical and horizontal moments, and
used a so-called cascade-partial-sum method to com-
pute the summation of the partial results. The time
complexity for calculating the moments is O((p#1)
(q#1#c

1
) log(n)#(q#1#c

2
)n) for a linear array,

where c
1

and c
2

are the times spent in intermediate
summations for the cascade-partial-sum method, and
the values will be increased irregularly when p and
q increase. Many processors in the 2-D processor
array are idle for most of the time of computation.
Reference (18) assumed the data were preloaded into
the processor array. It would take at least n time units
to load the data which was not included in the time
analysis. The cascade-partial-sum method was em-
ployed to perform the calculation of higher-order
moments, and would take more time for the inter-
mediate summations as discussed above. In addition,
because the data flow was irregular that caused diffi-
culty in achieving correct timing and because the
cascade-partial-sum method used recursive scheme,
the memory (number of processors) had to be varied
for different order of moments. Therefore, this algo-
rithm is not suitable to be implemented using VLSI
architecture(19,20).

1.2. »¸SI and image processing

Many VLSI architectures have been developed to
implement parallel algorithms for image processing
and pattern recognition. Cheng et al.(21~24) have de-
veloped several VLSI architectures for different ap-
plications. By using VLSI architecture, we can speed
up the computation tremendously. In order to im-
prove the performance, using both parallelism and
pipelining, a VLSI architecture should have the fol-
lowing characteristics:(19,20)

(1) There are only a few different types of processing
elements, and the communication between them is
local, simple, and regular.

(2) Data flow is simple and regular. In the best case,
the data flow is linear (only one direction).

In this paper, we present two VLSI architectures
to compute regular moments and another VLSI
architecture to compute central moments. Since the

proposed structures use pipelining and parallel tech-
niques extensively, the time complexity for computing
the moments is greatly reduced. Also, the structure of
each processing element is very simple, regular, and
can be easily manufactured by VLSI technology.

2. VLSI ARCHITECTURES FOR THE COMPUTATION
OF REGULAR MOMENTS

In this Section, we will discuss the VLSI architec-
tures for calculating moments. The structures of three
different processing elements are shown in Figs 1a, 3a
and 6b, respectively, and the ‘‘time unit’’ used here is
determined by the time needed for an operation.
Within a processing element, the operation for cal-
culating xp]yq]f (x, y)#Out

pre
must be done

concurrently with other operations for reducing com-
putational time.

2.1. One-dimensional »¸SI architecture

For an n]n image, it is possible to use a 1-D VLSI
structure to calculate the moments of order (p#q)
using the following algorithm:

f (x, y) is the gray level of the image.
x and y are corresponding coordinates of the pixel.
M

p,q
are the moment of order (p#q) of the image.

let x :"1; M
pq

:"0
while(x(n)
begin
y :"1
Out

pre
(x, y) :"0

while(y(n)
begin

Out
nex

(x, y) :"Out
pre

(x, y)#xp]yq]f (x, y)
Out

pre
(x, y#1) :"Out

nex
(x, y)

y :"y#1
end/*while(y) */
y :"y!1
M

pq
:"M

pq
#Out

nex
(x, y)

x :"x#1
end /* while(x) */

The sequential algorithms with loops can be imple-
mented using VLSI architectures(19,20). Based on the
above algorithm, we can input the data into a 1-D
systolic array row by row (or column by column) to
calculate xp]yq]f (x, y) for each pixel in that row
(column). Add the results in that row, and accumulate
results of all rows. Using this procedure, we can calcu-
late the moments of order (p#q). The data have to
meet the timing requirement and should be skewed.
According to the above algorithm, two types of pro-
cessing elements are needed for a 1-D systolic array.
The first kind of processing elements will have:

Five inputs: p, q, f (x, y), control signal, and the out-
put from the left processing element;
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Fig. 1. (a) The structure of processing element for one-dimensional architecture. (b) The symbolic repres-
entation of the processing element.

Four outputs: p, q, the output to the right processing
element, and a signal which starts the
calculation of the processing element;

Three multipliers: one for calculating xp , one for cal-
culating yq , and another for com-
puting xp]yq]f (x, y);

Two registers: to store the corresponding coordinates
of the processing element;

One adder: to add the output from the left neighbor
processing element and the currently cal-
culated value;

The logical gates are necessary for controlling the
timing of operations. Figure 1a shows the structure of
the processing element, and its symbolic representa-
tion is shown in Fig. 1b. From Fig. 1a, it is clear that

within a processing element, the operation for calcu-
lating xp]yq]f (x, y)#Out

pre
must be concurrent

with other operations. The computation time needed
for each processing element is max(p, q)#2. The sec-
ond kind of processing element is an accumulator
which is the (n#1)th processing element.

Now we will discuss the functions performed by
each processing element in detail.

2.1.1. Operations. Each processing element will re-
ceive p, q, f (x, y), and the output from its previous
processing element as the inputs. The data, f (x, y), will
be input to the 1-D array row by row (or column by
column). At the first time unit, the processing element
(1, 1) will receive p and q, store these values in the
registers and start to calculate 1p and 1q. At the same
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Fig. 2. One-dimensional VLSI architecture.

time, p and q will be sent to the delays connected with
the next processing element. Since 1p and 1q can be
computed simultaneously, it takes max(p, q) time
units to finish the computation. Meanwhile, the start
signal takes max(p, q) time units to input f (1, 1) and
to calculate Out

nex
"Out

pre
#1p]1q]f (1, 1). It takes

two more time units to do the multiplication and
addition (refer Fig. 1a). Thus, the total time to calculate
Out

nex
"Out

pre
#1p]1q]f (1, 1) is max(p, q)#2. The

start signal will be input to processing element (1, 2)
after one time unit, i.e., at the time unit max(p, q)#1.
Note, the value of Out

pre
for processing element (1, 1)

is zero. At time unit max(p, q)#2, the processing
element (1, 1) will produce the output and pass it to
processing element (1, 2).

The values of p and q will arrive at processing
element (1, 2) at the second time unit, and start to
compute 1p and 2q. It also takes max(p, q) time units
to calculate 1p and 2q. At the max(p, q)#1 time unit,
the calculation for 1p and 2q is finished. At the same
time, f (1, 2) is input to processing element (1, 2). From
the above discussion, at time unit max(p, q)#1, the
start signal will arrive at processing element (1, 2). At
the same time, the required data, 1p, 2q, and f (1, 2) are
ready. Thus, when the output from the previous pro-
cessing element (1, 1), Out

pre
, is received by processing

element (1, 2) at the next time unit, then processing
element (1, 2) will perform the multiplication and addi-
tion, and produce the output Out

nex
"Out

pre
#1p]

2q]f (1, 2) at the max(p, q)#3 time unit. The adjac-
ent data of the same row needs one time unit delay in
order to match the timing requirement.

Now, let us consider the data of the next row. In order
to calculate Out

nex
"Out

pre
#2p]1q]f (2, 1), the x-

coordinate of processing element (1, 1) has to be in-
creased by one after 1p is calculated, i.e., at the pth time
unit, x will be increased from 1 to 2. Then, max(p, q)
time units are needed to calculate 2p and 1q. Thus,
max(p, q) time units delay is necessary to input the first
data in the second row. Here we want to indicate that
for the data f (x, y) x"1, 2, 2 , n in the same column,
they have the same value yq, which was already com-
puted during computing the moments of f (1, y) , and
can be input for f (x, y) without computing yq again.
But, we can make a trade-off between the regularity
and uniformity of the processing elements and the
simplicity of the structure. For most VLSI design, the
regularity is more important, and we adapt this prin-
ciple here. Figure 2 shows the VLSI structure and the
arrangement of the data. For an n]n image, we need
n#1 processing elements to form the 1-D structure.

The operations of this structure are summarized as
follows:

(1) p and q will be input to and stored in the first
processing element at the first time unit. Then they
are passed to and stored in the next processing
element after one time unit, and so on.

(2) A start signal with max(p, q) time delay is needed
for inputting the first data in the first row, and it
will be passed to the next processing element after
one time unit.

(3) A max(p, q) time delay is needed to input data of
adjacent rows.
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(4) The input data should be skewed.
(5) The x-coordinate of each processing element will

be increased by one after the xp is computed ac-
cording to the corresponding data arrangement,
and y-coordinate is fixed. Certainly, if we want to
input data column by column, the roles of x and
y will be switched.

Based on the above discussion, the time complexity is
O(max(p, q)#2#n!1#max(p, q)](n!1)#1)"
O(max(p, q)]n#n#2) for computing the (p#q)th
moment of the image. If there are k images, the time
complexity will be k[max(p, q)]n#n#2].

2.1.2. Verification of the proposed structure. From the
above discussion, we can verify this 1-D array by induc-
tion on y.

Without loss of generality, we assume that each
operation takes one time unit, and it takes one time unit
for data to travel from one processing element to
the next one. Also assume that the data are input row
by row.

¹heorem. It needs max(p, q)#2#y!1#max(p, q)]
(x!1)"max(p, q)]x#y#1 time units for the
(1, y)th processing element to produce produce the
output + (s/x)

(s/1)
spyq f (s, y).

Proof. It is obvious that it takes max(p, q) time units
to calculate both xp and yq.

Basis: Consider the case when x"1, y"1, and pro-
cessing element (1, 1). According to the discussion in
Section 2.1.1, at the max(p, q)th time unit, xp and
yq are calculated, f (1, 1), and start signal will arrive at
processing element (1, 1). Then, two more time units
are needed to perform a multiplication and an addition.
So it takes max(p, q)#2"max(p, q)#2#1!1#
max(p, q)](1!1) time units for the first processing
element to perform the calculation and produce the
output.

Induction step: Our induction hypothesis is that it
takes max(p, q)#2#y!1#max(p, q)](x!1)"
max(p, q)]x#y#1 time units for the (1, y)th pro-
cessing element to produce the output +(s/x)

(s/1)
spyqf (s, y).

Now, consider data f (x, y#1) and the (1, y#1)th
processing element. According to the discussion in
Section A, p and q will arrive at the (1, y#1)th pro-
cessing element at the (y#1)th time unit. The x-coor-
dinate of the (x, y)th processing element, x'1,
takes max(p, q)](x!1)#y!1 time units to in-
crease from 1 to x. Thus, at max(p, q)](x!1)#
y!1 time unit, the (x, y#1)th processing element
will start to calculate xp and (y#1)q. It takes
max(p, q) time unit to finish the calculation. Therefore,
at the max(p, q)](x!1)#y#1!1#max(p, q)"
max(p, q)]x#y time unit, xp and (y#1)q are
calculated. At the same time, f (x, y#1) will arrive
at the (x, y#1)th processing element at the

max(p, q)]x#(y#1)!1"max(p, q)]x#y time
unit. Two more time units are needed to perform the
multiplication and addition, so it takes max(p, q)]
x#(y#1)!1#2"max(p, q)]x#y#1 time units
for the processing element to perform the calculation
and produce the output. The proof is completed.

Corollary 2.1-1. The regular moments for an n]n
image can be obtained at the max(p, q)]n#n#2
time unit.

Proof. Follow the theorem, let x"n and y"n, the
output from the last processing element, (1, y), can be
obtained at the max(p, q)]n#n#1 time units.
Then, at the next time unit (required by the accumula-
tor), max(p, q)]n#n#2 time unit, moments of
order (p#q) can be obtained.

2.2. ¹wo-dimensional »¸SI architecture

In this section, we present a 2-D VLSI architecture
to perform the calculation of the moments with
a much smaller time complexity. The basic algorithm
for the 2-D architecture is as follows:

Let M
pq

:"0
while not finished
if start"0 then
for y :"n to 1 do

for x :"1 to n do
begin

store f (x, y) in the register of the (x, y)th process-
ing element
calculate xp and yq

end /*for x*/
end /*for y*/
if start"1 then
x :"1
while(x(n)
begin

y :"1
Out

pre
(x, y) :"0;

while (y(n)
begin

Out
nex

(x, y) :"Out
pre

(x, y)#xp]yq]f (x, y)
Out

pre
(x, y#1) :"Out

nex
(x, y)

y :"y#1
end /*while y*/
y :"y!1
M

pq
:"M

pq
#Out

nex
(x, y)

x :"x#1
end /* while x*/

For this architecture, we need n](n#1) processing
elements. The structure of each processing element is
about the same as the one in 1-D VLSI architecture,
but more outputs and inputs are needed. Figure 3a
shows the structure of each processing element, and
Fig. 3b is its symbolic representation.
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Fig. 3. (a) The structure of processing element for 2-D architecture. (b) The symbolic representation of the
processing element.

2.2.1. Operations and verification of the proposed
structure. In this architecture, we need to input
the data from the last column (or row) to make sure
that when the calculation is started, the data are
in the correct processing elements. A start signal
is employed to start the calculation. The start signal
will not be issued until f (1, 1) is input into processing
element (1, 1). It takes n time units for f (1, 1) to
arrive at processing element (1, 1). Meanwhile, p, q,
and f (x, y) will be input to and stored in the correct
processing element. Once the processing element re-
ceives p, q, and the corresponding f (x, y), it starts
to calculate xp, yq, and stores f (x, y) in the
register.

After the start signal is issued, processing element
(1, 1) will need two more time units to perform the
calculation of Out

nex
"Out

pre
#xp]yq]f (x, y). In

the next time unit, the start signal will be passed to the
next processing element, processing element (1, 2), and
to the processing element below, processing element
(2, 1), and so on. Since the processing elements will
start to calculate xp and yq right after p and q arrived,
when the start signal is input, both xp and yq have
been calculated. The processing elements will then
perform the calculation and produce the output using
f (x, y) that is stored in the register of the correspon-
ding processing element. It is clear that after the start
signal is arrived, the time delay for the output data is
one time unit. To calculate the moments for an n]n
image, we need n time units delay for issuing the start
signal. Then, another 2#n#(n!1)#1"2n#2
time units are needed to complete the entire calcu-
lation. Totally, it takes 3n#2 time units to calculate
the moments of order (p#q) for an n]n image.
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Fig. 4. The 2-D VLSI architecture.

From the above description, it is obviously that the
structure will produce correct result with the time
complexity projected. We simply verify the proposed
structure and the time complexity using the method
described in Section 2.1.

Figure 4 shows the entire 2-D VLSI architecture.
From Fig. 4 we can see that the data are skewed
and the last column of data, f (1, n), f (2, n), 2, f (n, n),
are input first, the first column of data, f (1, 1),
f (2, 1), 2, f (n, 1) , are input last. Reference (24) has
a briefly description about how to arrange the data to
ensure the correct data flow and timing.

The 2-D architecture needs only 3n#2 time units
to finish the computation. If using uniprocessor, the
time complexity is O((p#q)]n2).

If there are k images to process, when the first image
starts to compute, the second image can be input to
the processing array, and the start signal will be sent
out once for every n time units. The total time com-
plexity is 2nk#n#2.

3. TWO-DIMENSIONAL VLSI ARCHITECTURE
FOR CENTRAL MOMENTS

In this section, we propose a 2-D VLSI architecture
for calculating the central moments. According to
equation (3), for calculating xN and yN , we have to
compute M

00
, M

01
and M

10
. From the definition of

moments we know:

M
00
" +

(x,y)|A

x0y0f (x, y)" +
(x,y)|A

f (x, y), (5)

M
01
" +

(x,y)|A

x0y1f (x, y)" +
(x,y)|A

yf (x, y), (6)

M
10
" +

(x,y)|A

x1y0f (x, y)" +
(x,y)|A

xf (x, y). (7)

The following algorithm is used to calculate M
00

,
M

01
and M

10
.

let M
00

(x) :"M
01

(x) :"M
10

(x) :"0
let M

00
:"M

01
:"M

10
:"0

for y :"n to 1 do
for x :"1 to n do
begin

M
00

(x) :"M
00

(x)#f (x, y)
M

01
(x) :"M

01
(x)#y]f (x, y)

M
10

(x) :"M
10

(x)#x]f (x, y)
end /* for x*/

end /* for y*/
for x :"1 to n do
begin

M
00

:"M
00
#M

00
(x)

M
01

:"M
01
#M

01
(x)

M
10

:"M
10
#M

10
(x)

end /* for */

A 2-D VLSI structure for calculating central mo-
ments shown in Fig. 6 consists of two subsystems:

f Subsystem A is to calculate xN and yN .
f Subsystem B is to calculate the central moments.

1398 H. D. CHENG et al.



Fig. 5. (a) The structure of the processing element of the first column of subsystem Z. (b) The structure of
the processing element of the second column of subsystem A. (c) The structure of the processing element of

the third column of subsystem A.

According to the above algorithm, we can construct
a VLSI architecture for computing xN and yN . This VLSI
architecture consists of 3]n processing elements. The
first column is to compute M

00
. The structure of the

processing element in the first column of subsystem
A is shown in Fig. 5a. The second column is to
compute M

10
. The processing element of the second

column of subsystem A is shown in Fig. 5b. The value
of x can be input (requiring input channel) or pre-
stored in each processing element. The third column is

for computing M
01

. Each processing element of the
third column of subsystem A is as shown in Fig 5c. We
need to input or pre-store the value of y in each
processing element of this column, and to input the
data from the last column. This value will be de-
creased by one after the value is used until the last
data is calculated.

To calculate the central moments, we can combine
subsystem A with 2-D architecture (subsystem B)
in Section 2 to form a new architecture as shown in
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Fig. 6. (a) The 2-D VLSI structure for calculating the central moment. (b) The structure of processing
element for 2-D architecture. (c) The symbolic representation of the processing element.

Fig. 6(a). Let us discuss the functions performed by the
proposed VLSI architecture.

3.1.1. Operations and verification of the proposed
structure. Data f (x, y) will be input in a column-
major manner, and the last column of the data,
f (1, n), f (2, n), 2, f (n, n) are input first; the first
column, f (1, 1), f (2, 1), 2, f (n, 1) are input last.

At the first time unit, the data will be input to
subsystem A, and at the third time unit, the data will

be input to subsystem B. In order to perform the
correct calculation, we have to skew the input data to
meet the time requirement. The data of the first row
will arrive at the corresponding processing elements
of subsystem B at the (n#3)th time unit and will be
stored in the registers and wait for the start signal to
perform the calculation.

According to the data arrangement as shown in
Fig. 6a, at the (2n)th time unit, M

00
will be calculated

and sent to the next column to calculate xN . At the next
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Fig. 6. (continued)

time unit, M
10

will be calculated and used for comput-
ing xN , and M

00
will be sent to the next column to

perform the calculation of yN . At the next time unit, the
(2n#2) th time unit, M

01
will be calculated and used for

computing yN . Then xN and yN will be input to subsystem B.
We can calculate (x!xN )p and (y!yN )q at the

(2n#3)th time unit, and it takes max(p, q) time units
to calculate (x!xN )p and (y!yN )q. Therefore, we have
to arrange the data and start signal to be ready at the
(2n#3#max(p, q))th time unit. Hence, a start signal
will start the calculation of subsystem B at the
(2n#3#max(p, q)#1)th time unit.

The structure of the processing element and its
symbolical representation are shown in Fig. 6b and

6c, respectively. Follow the data arrangement and
Fig. 6a, we can see that it needs 2n#3#max(p, q)
time units for issuing the start signal, and 2n!1#2
#1"2n#2 time units to perform the moments com-
putation. Thus, it takes total 2n#3#max(p, q)#
2n#2"4n#max(p, q)#5 time units to finish the
entire calculation.

From the above description, it is obvious that the
structure will produce the correct result with the time
complexity projected. We can verify the proposed
structure and the complexity using the method in
Section 2.1. The time complexity of this structure is
O(n). If a uniprocessor is used, the time complexity is
3n2#(p#q)]n2"O (n2).
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Fig. 7. Case 907408A (size 660]440) with Score 1.

4. ALGORITHM PARTITION

In the real-world applications, the images are often
with very large sizes. When we use moments as the
features, moment computation can become the bottle-
neck of the system. It is not practical to build a VLSI
architecture with a huge amount of processing ele-
ments to suit all tasks with different sizes. Also, we do
not want to design every new machine for each indi-
vidual task even the only difference between the tasks
is their sizes. Therefore, we should design a fixed-size
VLSI architecture to solve this problem.

When a computational task size is larger than the
VLSI architecture size, we have to partition the
task into smaller subtasks to calculate the moments
on a fixed-size VLSI architecture. If we have an
image with size k]l and the 2-D VLSI architecture
with size m]n, and k, l are dividable by m and n,
respectively, we can easily partition the image and
calculate the moment using the size m]n VLSI archi-
tecture. If k and l cannot be divided by m and n, we can
fill zeros to the last columns and the last rows of the
image, such that, they can be divided by m and n,
respectively.

Assume the dimension of the image is k]l and
vk%mw"s, vl%nw"t. We can divide the image
into s]t subimages with size m]n. We use (s, t) to
index the subimage. Each subimage can be input to
the 2-D array to perform the calculation. In order to
perform the correct calculation, two sets of sequential
pulses are needed. The first set of sequential pulses

with n#m#max(p, q) time units delay is needed to
increase the y index of the coordinates (x, y) of the
processing element. Another set of sequential pulses
with n#m#max(p, q)#t delay is needed to reset
the y index and to increase the x-coordinate of the
corresponding processing element. Therefore, at the
first time unit, subimage (1, 1) of the image is input to
the VLSI structure, while the 2-D structure calculat-
ing the regular moment of the (1, 1)th subimage,
the indices of the coordinates of the processing elements
are: (1, 1), (1, 2), 2(1, n), (2, 1), 2(2, n), (m, 1), 2, (m, n).
When the processing elements finish calculating
xp and yq, y can be increased to y#(t!1)]n to
match with the corresponding indices of the coordi-
nates for the next subimage (1, 2), that are:
(1, n#1), (1, n#2), 2 , (1, n#n), (2, n#1), 2 ,
(2, n#n), (m, 1), 2, (m, n#n). Clearly when the subim-
age (1, t) is input to the VLSI structure, the indices of the
coordinates (x, y) are: (1, (t!1)]n#1), 2(1, (t!1)]
n#n), (2, (t!1)]n#1), 2 , (2, (t!1)]n#n),
(m, (t!1)]n#1), 2 , (m, (t!1)]n#n). At the
next time unit, the first pulse of the second set of
sequential pulses is input, the processing elements
reset the y indices to 1, 2, 2 , n and increase x to
x#(s!1)]m. This procedure will divide the k]l
image into s]t subimages with the size m]n. The
VLSI architecture will compute regular moments of
each subimage. Thus, an accumulator will add the
s]t moments, and that is the regular moment of the
original image. Similarly, the method can be used to
calculate the central moments.
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Fig. 8. Case 891280B (size 648]442) with Score 2.

Fig. 9. Case 8912809A (size 648]442) with Score 3.

5. MOMENTS FOR BREAST CANCER DETECTION

We have employed central moments as the features
for breast cancer biopsy images. The features are
input into neural networks for classification. Based on

the nature of neural networks, after training, neural
networks can operate extremely fast, and the feature
extraction (moment computation) becomes the bottle-
neck of the entire process. VLSI architectures for
moments can solve such a problem.
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Table 3. Comparison of the time complexities of faster mo-
ment calculation approaches. m is the number of boundaries
(edges) of polygon, n* is the number of pixels in each edge,
n is the dimension of the image, (according to the discussion
in Section 1, Chen’s method is not suitable for the VLSI

implements)

Method Time complexity

Uniprocessor Multiprocessor VLSI

Linear 2-D
array array

Jiang’s method O(mn*) ] Y
Li’s method O(mn*) ] Y
Chen’s method ] O (n) O(n) N
Our method ] O (n) O(n) Y

Table 2. Comparison of the results by computer and
physicians

Case number Score rated Score rated
by physicians by computer

8912809A 3 3
8912809B 2 2
8922992A 2 2
90336T3A 1 1
90336T3B 1 1
905840A 3 3
905840B 3 3
907408A 1 1
907408B 1 1
909511A 2 2

Table 1. The first 25 central moments of Figs 7—9

Order of Fig. 13 Fig. 14 Fig. 15
moment

m
00

0.8889 0.9791 0.9004
m

01
0.0000 0.0000 0.0000

m
02

0.8644 0.9967 0.9163
m

03
!0.0190 !0.0190 !0.5169

m
04

0.8284 1.0000 0.9188
m

10
0.0000 0.0000 0.0000

m
11

!0.0352 !0.4442 !0.5646
m

12
0.0005 !0.2889 0.0200

m
13

!0.0815 !0.6459 0.0038
m

14
0.0010 !0.0468 !0.0022

m
20

0.8707 0.9858 0.8697
m

21
!0.0255 0.3696 0.1468

m
22

0.8429 1.0000 0.8822
m

23
!0.0306 0.0488 0.0626

m
24

0.8042 1.0000 0.8815
m

30
!0.2534 !0.3456 !0.2952

m
31

!0.1086 !0.6451 !0.1421
m

32
!0.2380 !0.3734 !0.2880

m
33

!0.2498 !0.8744 !0.0522
m

34
!0.2280 !0.2954 !0.3043

m
40

0.8468 0.9909 0.8343
m

41
!0.0074 0.1853 0.1603

m
42

0.8151 1.0000 0.8424
m

43
!0.0034 !0.1613 0.0679

m
44

0.7772 1.0000 0.8416

Table 4. The time complexities of PC, PE and 1-D array for
computing M

55
. (Certainly, if using large K and computing

more moments, the advantage of VLSI architectures will be
even great)

Image size PC PE 1-D array with K PEs
(s) (s)

512]512 2.1 0.147 0.147/K
1024]1024 8.4 0.587 0.58/K

Breast cancer continues to be a significant public
health problem in the United States. One out of eight
women will develop cancer at some point during her
lifetime. The earlier stage tumors are more easily and
less expensively treated. Because of this fact, and be-
cause of the high incidence of breast cancer, any
improvement in the process of diagnosing the disease
may have a significant impact on years of life saved
and cost of the health care system.

Here, we will grade the breast cancer in biopsy
images. It is necessary for a physician to distinguish
between benign lesions and the various degrees of
malignant lesions from mammography or biopsy im-
ages. Normally, three degrees are classified for the
biopsy images of breast cancer. When there is a ma-
jority of tubular structure in the image, a high score
three is given. When there are only a little or no
tubular structure in the image, score one is given.
Intermediate differentiation obtains a score of two.(25)
To speed up the process and increase the accuracy, we
use 25 central moments (p, q"0, 1, 2, 3, 4) as the
features of the biopsy images, and a neural network as
a classifier to grade the tubules of the images. We have
conducted some experiments of tubule grading using
breast cancer biopsy images. We first perform feature
extraction on 591 breast cancer images. Figures 7—9
are the sample breast cancer images with scores 1, 2,
and 3, respectively, and their corresponding moments
are listed in Table 1. The image sizes are 660]440,
648]442, and 648]442, respectively. We construct
a training set by randomly selecting 472 images from
the entire breast cancer images set, and the other 119
images as testing set. Their central moments were
computed and used as the inputs of the neural net-
work. After 2 h of training on a Pentium 200 PC, the
neural network successfully converged. Then, we use
the resulting neural network to classify the testing
images into three classes without any mis-classifica-
tion. Table 2 shows part of the results from the experi-
ments.

The approach to adopt specially designed hardware
accelerator for speeding up the moment computation
has been studied.(26) Register-transfer level (RTL) de-
sign of core functional units was discussed. Testing
results based on implementation using FPGA (field
programmable gate array) devices show that at an
affordable cost, the proposed moment accelerator can
speed up the moment computation significantly. We
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used Xilinx XC4020E FPGA (density: about 20,000
gates per chip) to implement a PE which needed two
XC4020Es, and total gate count of the PE was below
25,000 gates. We also used a Pentium 166 PC to
compute the moments for comparison.

The comparison of the time complexities of the
faster algorithms discussed in Section 1 is shown in
Table 3. Also, the comparison of the time complexities
of the PC, PE and 1-D array is listed in Table 4. For
example, in order to compute M

55
for an image with

size 512]512, if using a Pentium 166 PC, a PE and
a 1-D array of 100 PEs, it takes 2.1 s. 0.147 s, and
1.47 ms, respectively. We may use more PEs or a 2-D
array to speed the computation further.

6. CONCLUSIONS

We study two VLSI implementations for calculat-
ing the moments of order (p#q). For the 1-D struc-
ture, it needs fewer processing elements, and the total
calculation time is max(p, q)]n#n#2 time units.
For the 2-D structure, it needs more processing ele-
ments, but the total calculation time is 3n#2 time
units. If there are k images, the computational time for
the 1-D structure is k[max(p, q)]n#(n#2)]. For
the 2-D architecture, it takes (k!1)]2n#3n#2"
2nk#n#2. If a uniprocessor is used, the time com-
plexity is k](p#q) n2. We also present a 2-D VLSI
architecture for calculating the central moment which
takes 4n#5#max(p, q) time units. The important
issue in VLSI design, algorithm partition, is also
studied.

We have employed central moments as the features
for breast cancer grading. The preliminary results
demonstrate the 100% accuracy. Moments are very
useful for many applications and the proposed archi-
tecture can speed up the computation greatly, there-
fore, it will have wide applications in the areas of
image processing, pattern recognition and computer
vision, especially, for real-time processing.
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