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Abstract

This paper presents an integral approach for the tissue characterization problem. Such an approach includes a

model, estimation algorithms and an evaluation method. This work focuses on liver and breast tissue characterization

but it may be applicable to other tissue types after proper modifications. Liver and breast tissue is composed of two

major kinds of scattering structure, i.e., the liver and breast parenchyma, which is relatively large and thus resolvable

using the current ultrasonic transducers, and liver and breast cells which are not resolvable. In this work, we propose a

decomposition approach for the RF echo into two components, namely the coherent and diffuse component, which are

related to the resolvable and unresolvable scatterers in the liver and breast structure, respectively. Structural differences

between the liver and breast, related to the resolvable scatterers properties, led us to develop two different decompo-

sition algorithms. The first algorithm was developed for the liver RF echo and was based on the quasi-periodic structure

of the liver lobules. Breast tissue decomposition was based on a more general model for the resolvable scatterers echo,

because the breast tissue parenchyma is far from regular. By using the proposed decomposition we were able to estimate

structural parameters of the liver and breast such as the average spacing of the liver lobules, the energy of the resolvable

and unresolvable scatterers, and the correlation between neighboring unresolvable scatterers in the tissue. Empirical

receiver operating characteristics analysis was applied to the parameters estimated from a large database of liver and

breast B-scan images, to evaluate their diagnostic power. Single parameters of the liver and breast tissue showed good

discriminating power between cancerous and normal liver and breast tissue, and also between malignant and benign

breast tissue. The ability to identify small breast lesions (4 mm) is also demonstrated.

� 2002 Published by Elsevier Science B.V.
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1. Introduction

Ultrasonography is an imaging modality that is

non-invasive and painless, it is real time, it is of

low cost, and it is safe for the patient. Neverthe-

less, its diagnostic value for breast and liver cancer
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detection is limited because of the low resolution

of the imaging system with respect to the tissue

structures, that results in difficult visual differen-

tiation between normal and pathologic tissue, es-

pecially at the early stages of cancer formation (<5
mm). The resolution can be increased by increas-
ing the central frequency of the transducer, but in

this case we observe high attenuation resulting in

limited penetration depth, which makes the ex-

amination of deep organs impossible. Hence, in

order to ultrasonographically examine organs such

as the liver, we have to compromise with limited

resolution.

To improve the usefulness of ultrasound in
early diagnosis of cancer a lot of attention has

been focused in developing quantitative methods

for extracting additional information from the

returned echoes for tissue characterization. The

ultimate goal is that this additional information be

adequate for normal and pathological tissue dif-

ferentiation, when the difference is not visually

obvious in a conventional B-mode ultrasound
image. This work focuses in the development of a

tissue characterization method based on ultra-

sound data that is able to differentiate between

healthy and various types of diseased soft tissue.

We consider liver and breast tissues but the

method may be modified to treat other types of

tissue.

Ultrasonic interaction with tissue depends on
the scattering structures which are involved. A

three level model of the human liver scattering was

first introduced by Bamber in 1979 (Bamber,

1979). He proposed a three component model

which arises from superimposed structures with

dimensions corresponding to cells, the liver pa-

renchyma and larger structures such as blood

vessels. Later, in 1986, a classification of scatterers
based on their size or concentration relative to the

resolution cell of the imaging system was intro-

duced by Wagner and his team (Wagner et al.,

1986; Insana et al., 1986). They classified the

scatterers in two broad categories. The first class

contains the so-called diffuse scatterers. They are

related to the cells of soft tissue organs such as the

liver and the breast. They are small in size (rela-
tively to the resolution cell) and distributed ran-

domly within the resolution cell. The interference

of their echoes results in a fine grained texture in

ultrasound images known as speckle. The process

of interference was first described geometrically by

Goodman (1975) for the laser speckle case, as a

random walk of component phasors. The second

class of scattering structures is related to the liver
and breast parenchyma (liver and breast lobules

and breast ducts) and blood vessels boundaries.

These scatterers are large relatively to the resolu-

tion cell and thus can be resolved. They exist

concurrently with the unresolved scatterers and

are termed coherent scatterers. The presence of a

coherent scatterer component leads to deviations

from the Rayleigh scattering (Wagner et al., 1987;
Insana et al., 1986; Tuthill et al., 1998). There is a

major structural difference between the resolvable

scatterers of the liver and breast. The liver lobules

are organized in an almost periodic manner, re-

sulting in a quasi-periodic coherent scattering

component. The structure of the breast ducts and

lobules is far from regular. Due to the quasi-peri-

odic structure of the liver, the average spacing
between the coherent scatterers has been exten-

sively used to characterize the liver structure

(Fellingham and Sommer, 1984; Landini and

Verrazani, 1990). More recently, tissue character-

ization techniques exploit the information about

the multicomponent scattering structure by mod-

eling the RF signal with a two (Cohen et al., 1997;

Varghese and Donohue, 1994) or three (Donohue
et al., 1999; Abeyratne et al., 1996) component

model and estimating quantities relevant to struc-

tural features. The two component models con-

sider only echoes from periodic or quasi-periodic

resolvable scatterers and diffuse (non-resolvable)

scatterers, while the three-component models add

a third type of echoes, produced by resolvable,

non-periodic scatterers. The common characteris-
tic of the works in (Varghese and Donohue, 1994;

Donohue et al., 1999; Abeyratne et al., 1996) is

that they do not decompose the signal into differ-

ent components, but they use a multicomponent

model to estimate specific features.

This paper presents a tissue characterization

approach which includes a model, estimation

algorithms and an evaluation technique. It is based
on a decomposition of the RF echo of the liver and

breast in accordance with the two major scattering
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structures present in these tissues i.e., the quasi-

periodic coherent scatterers related to the portal

triads and lobules of the liver tissue and the ducts

and lobules of the breasts tissue, and the diffuse

scatterers related to the liver and breast tissue cells.

Before embarking on the decomposition, a formal
way of detecting whether or not an RF echo ex-

hibits any specular scattering relative to the

wavelength of the interrogating ultrasonic pulse is

used. For the case of the liver, whose resolvable

component is regular, minimum mean square

(MMSE) estimates of the scattering space as well

as the residual error variance of the diffuse com-

ponent, that are efficient, computationally simple
and result in accurate estimates in low signal-

to-noise ratios (SNR) are derived. The MMSE

estimates yield unique closed-form solutions and do

not require a priori knowledge of the probability

distribution function of the backscatter echo. For

the case of the breast whose structure is far from

regular, a decomposition based on thresholding

the average power of the wavelet transform (WT)
is developed. Both decomposition algorithms led

to the estimation of parameters which are closely

related to the tissue structure, such as the average

spacing of the coherent scatterers of the liver and

the energy of the coherent and diffuse scatterers.

The estimated parameters are used for the char-

acterization of the tissue through the use of em-

pirical receiver operating characteristics (ROC)
curves. The ROC analysis was chosen because it

can quantify the diagnostic capacity of a system

independently of the decision criterion. The pro-

posed system is able to identify small lesions in the

liver and breast (8 mm for the liver and 4 mm for

the breast). This property, demonstrated with re-

sults, is very important because it implies that

early cancer detection is possible.
This paper unifies and presents in one place

work that has already been published (Cohen et al.,

1997; Georgiou and Cohen, 2001; Georgiou et al.,

2001), as well as new unpublished material such as

ROC analysis results on breast tissue character-

ization based on 4 mm data records, liver tissue

characterization results using the residual error

variance of the diffuse component and ROC
analysis on both the coherent scatterer spacings

and residual error variance of the diffuse compo-

nent of the liver. The rest of the paper is organized

as follows. In Section 2, the RF echo model is

introduced. The diffuse and coherent components

are presented along with models describing their

nature. The decomposition algorithms for both

liver and breast are described in Section 3. Ex-
perimental results are presented in Section 4. We

conclude the paper with a discussion in Section 5.

2. RF echo model

The RF echo signal is result of a three-dimen-

sional convolution between the three-dimensional
pressure wave and the three-dimensional tissue

structure (Insana et al., 1990). However, under

the assumptions of weak scattering, narrow ultra-

sound beam and linear propagation, the point

scatterer model is an adequate model and has been

widely used in the literature (Wagner et al., 1986;

Varghese and Donohue, 1994; Donohue et al.,

1999; Abeyratne et al., 1996; Wear et al., 1993).
Let hðtÞ be the ultrasound pulse shape and sðtÞ be
the scatterer distribution. Then the RF echo yðtÞ is:
yðtÞ ¼ sðtÞhðtÞ ¼ pðtÞ þ dðtÞ; ð1Þ
where pðtÞ is the interaction of the pulse with the
resolvable scatterers, i.e.,

pðtÞ ¼
XNc
n¼1

pnðt � hnÞhðtÞ; ð2Þ

where Nc the number of coherent scatterers, hn are

the time delays from the coherent scatterers to the

receiver and pn are their relative strengths. In Eq.
(1), dðtÞ is the interaction of the pulse with the
randomly located diffuse scatterers given by:

dðtÞ ¼
XNs
n¼1

dnðt � snÞhðtÞ; ð3Þ

where Ns is the number of unresolvable scattering
centers, sn are the time delays from the diffuse

scatterers to the receiver, and dn are their relative
strengths. The RF echo yðtÞ is sampled, resulting
in an A-line yðnÞ.
As the RF signal results from a scatterer dis-

tribution which consists of mainly two compo-

nents, the goal is to decompose it into these two
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components. The mechanism that allows such a

decomposition is the Wold-decomposition theo-

rem (Picinbono, 1993),

yðnÞ ¼ pðnÞ þ dðnÞ; ð4Þ
where:

(i) dðnÞ is the non-predictable part;
(ii) pðnÞ is completely predictable (the prediction

error is 0);

(iii) pðnÞ is uncorrelated with the prediction error
of dðnÞ. This implies that pðnÞ and dðnÞ are or-
thogonal, i.e., EfpðnÞdðsÞg ¼ 0 for all n and s.

The diffuse component dðnÞ is modeled as a

zero-mean autoregressive process of order p

ðARðpÞÞ, driven by a zero mean white noise se-
quence wðnÞ (not necessarily Gaussian) with vari-
ance r2, i.e.,

dðnÞ ¼
Xp

s¼1
asdðn� sÞ þ wðnÞ: ð5Þ

The power spectral density (psd) Sðf Þ of dðnÞ is
given by (Picinbono, 1993)

Sðf Þ ¼ r2

cðf Þ ¼
r2

1�
Pp

s¼1 as expf�j2pfsg
�� ��2 : ð6Þ

Next we present the model for the coherent com-

ponent of the liver and breast respectively.

2.1. Modeling the coherent component of the liver

For the case of liver, whose lobules are orga-

nized in a regular manner, the coherent component

pðnÞ is modeled as a periodic sequence with a pe-
riod m, i.e., pðnÞ ¼ pðnþ mÞ, and hence pðnÞ has a
Fourier series representation

pðnÞ ¼
Xm�1
k¼0

Ck exp
j2pkn
m

� �
: ð7Þ

Given an N-point sequence ðN PmÞ pðnÞ, n ¼
0; 1; . . . ;N � 1, let Nm ¼ amm be the largest integer

smaller or equal to N which is divisible by m, and

let PNmðkÞ be its Nm-point DFT, i.e.,

PNmðlÞ ¼
XNm�1

n¼0
pðnÞ exp

�
� j2pnl

Nm

�
; ð8Þ

where l ¼ 0; 1; . . . ;Nm � 1. Let k ¼ 0; 1; . . . ;m� 1.
Then l ¼ amk þ b with b ¼ 0; 1; . . . ; am � 1. After
some calculations (Cohen et al., 1997) PNmðamkþbÞ
reduces to:

PNmðamk þ bÞ ¼ NmCk; for b ¼ 0;
0; for b ¼ 1; 2; . . . ; am � 1:

�
ð9Þ

In light of Eq. (9), the scattering spacing estimates

will be derived directly based on the DFT data.

2.2. Modeling the coherent component of the breast

For the case of breast, where no regularity ex-

ists in the location of the resolvable scatterers, the

coherent component pðnÞ can be modeled by a

superposition of Gaussian modulated sinusoids:

pðnÞ ¼
XNc
i¼0

Ai

rci
ffiffiffiffiffiffi
2p

p exp
ðn� miÞ2

2r2ci

( )
cosðxcnÞ;

ð10Þ
where xc is the central frequency of the transducer,
mi indicates the location of the coherent scatterer,

rci is a parameter related to the transducer�s
bandwidth, Ai is related to the strength of the co-

herent scatterer and Nc is the number of coherent
scatterers in the window examined. The only

known parameter is xc.

3. Decomposition of tissues

In this section we explain first the decomposi-

tion for the liver and then the decomposition for

the breast. A schematic diagram of the general

approach is presented in Fig. 1.

3.1. Liver tissue decomposition

Let H0 be the null hypothesis that stands for the

absence of a resolvable coherent component, and

H1 the alternative hypothesis. Using the toroidal

lattice approximation for the boundary conditions

problem, the covariance matrix [R] is circulant and
diagonalizable by the Fourier matrix (Jain, 1989),

i.e.,
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½F 
½R
½F 
t� ¼ ½D
 ) ½R
 ¼ ½F 
t�½D
½F 
: ð11Þ
The Fourier transform is a unitary transform

(Jain, 1989), hence, det½R
 ¼ det½D
. It follows
(Cohen et al., 1997) that

ðy� pÞt½R
�1ðy� pÞ ¼ ðY � PÞt½D
�1ðY � PÞ
ð12Þ

where y ¼ ðyð0Þ; yð1Þ; . . . ; yðNm � 1ÞÞ, p ¼ ðpð0Þ;
pð1Þ; . . . ; pðNm � 1ÞÞ, and Y and P be their re-

spective Nm-point DFT, and ½D
 is the diago-

nal matrix ð1=NmÞdiag fSð0Þ;Sð1=NmÞ;Sð2=NmÞ; . . . ;
SððNm � 1Þ=NmÞg, where S is given in Eq. (6). Let

Nm be the largest number smaller or equal to N

such that for any possible period m there exists a

number in the closed set ½Nm;N 
 which is divisible
by m. Under H0, P ¼ 0 and hence C0 ¼ ðr20; a0Þ,
and the likelihood function pðyjC0;H0Þ ¼
pðyjr20; a0;H0Þ is given by

pðyjC0;H0Þ ¼
YNm�1

k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2pNmS0ðkÞ


 �s

� exp
(

�
XNm�1

k¼0

jY ðkÞj2

2NmS0ðkÞ

)
: ð13Þ

S0ðkÞ is given in (6), with f ¼ ð2p=NmÞk. a0, r20 are
the AR parameters and the residual error variance

under H0.

Under H1 and for a given m, C1 ¼ C1;m ¼ ðCm;
r21;m; a1;mÞ, and the likelihood function pðyjm;C1;m;
H1Þ ¼ pðyjm;Cm; r21;m; a1;m;H1Þ is given by

pðyjm;C1;m;H1Þ ¼
YNm�1

k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2pNmS1;mðkÞ


 �s

� exp
(

�
XNm�1

k¼0

jY ðkÞ � PmðkÞj2

2NmS1;mðkÞ

)
:

ð14Þ

S1ðkÞ, a1;m and r21;m are defined similarly to S0ðkÞ, a0
and r20.
Before we embark on the process of estimating

the unknown parameters, it is desirable to come up

with a formal statistical decision rule to check

whether or not there is enough evidence in the RF

data to suggest the presence of a resolvable co-

herent component.

Let pðH0jyÞ and pðH1jyÞ be the a posteriori
probability densities of H0 and H1, respectively,

given the data y. Let pðH0Þ ¼ pðH1Þ. Then the min-
imum average probability of error decision rule

is the Bayesian decision rule

Accept H0 if pðH0jyÞ > pðH1jyÞ;

otherwise accept H1: ð15Þ

This decision rule reduces to

Accept H0 if pðyjH0Þ > max
m

fpðyjH1;mÞg;

otherwise accept H1;m; ð16Þ

Fig. 1. Schematic diagram of the decomposition algorithm.
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where H1;m is the hypothesis of an assumed period

of m. Note that this decision rule is unbiased

(Cohen et al., 1997). A closed form expression for

pðyjH0Þ and pðyjH1;mÞ is given in (Cohen et al.,
1997). In the absence of knowledge of the pdf, the
unbiased decision rule in Eq. (16) is replaced by

the decision rule

Decide H0 if dð0Þ > max
m

dmð1Þ;

otherwise H1;m; ð17Þ

where

dð0Þ ¼ �Nm

2
logfr2�0 ðmÞg � nð0Þ log Nm

2p

� �
; ð18Þ

dmð1Þ ¼ �Nm

2
logfr2�1 ðmÞg � nð1Þ log Nm

2p

� �
: ð19Þ

The first term in Eqs. (18) and (19) is the residual

error and it is biased towards higher values of m.
To compensate on the number of degrees of free-

dom, we introduce a penalty function (the second

term of Eqs. (18) and (19)).

There are two possibilities for the distribution

of the diffuse component irrespectively of the

presence or absence of a coherent component,

namely the Rayleigh and the non-Rayleigh case.

For a more elaborate discussion on this subject
please refer to our earlier work (Georgiou and

Cohen, 1998). In the Rayleigh scattering case

where the diffused component is Gaussian (Wag-

ner et al., 1983), maximum likelihood (MLE)

estimates for the Fourier series and the AR pa-

rameters under an assumed period m can be

readily obtained by maximizing the joint likeli-

hood of the data y ¼ ðyð0Þ; yð1Þ; . . . ; yðNm � 1ÞÞ
pðyjC1;m; a1;m; r21ðmÞ;mÞ with respect to the un-

known parameters C1;m ¼ ðC0m;C1m; . . . ;Cðm�1ÞmÞ,
r21ðmÞ and a1;m ¼ ða1m; a2m; . . . ; apmÞ. The MLE are
efficient, and for relatively long records are unbi-

ased. They result in accurate estimates in low SNR

situations. Unfortunately, they require non-linear

minimization. In the non-Rayleigh scattering case

(Wagner et al., 1983) where the pdf of the data is
unknown, MMSE estimates of the unknown pa-

rameters are computed. The MMSE estimates are

computational simple, yield unique closed-form

solutions, and do not require a priori knowledge of

the probability distribution function of the back-

scatter echo. The MMSE estimates are computed

as follows:

r2ðmÞ ¼ 1

ðam � 1Þm
Xm�1
k¼0

jY ðamkÞ
"

� NmCkmj2cðamkÞ

þ
Xam�1
b¼1

Xm�1
k¼0

jY ðamk þ bÞj2cðamk þ bÞ
#
;

ð20Þ

where

cðamk þ bÞ ¼ 1

����� �
Xp

s¼1
asm exp

j2pðamk þ bÞs
Nm

� ������
2

ð21Þ
and

C�
km ¼ Y ðamkÞ

Nm
: ð22Þ

In general there is no guaranty that the estimation
of a1; a2; . . . ; ap results into a positive definite

spectrum. One possibility to overcome this prob-

lem is to use the fast Burg�s algorithm for esti-

mation the AR parameters, which is the only

method that guarantees the AR process to be min-

imum phase, i.e., positive definite spectrum (Kay,

1988).

The physical parameters which are estimated
through the decomposition and are used as tissue

signatures are the following:

(1) Average liver spacing of the coherent compo-

nent m which changes because the periodic

structure of the liver lobules is destroyed when

cancer is developed.

(2) The residual error variance of the diffuse com-
ponent r2 which is related to the energy of the
diffuse component.

3.2. Breast tissue decomposition

The assumption of regularly spaced coherent

scatterers which allowed us to use the simplified

model of Eq. (7), is not valid for the case of the
breast. The existence of non-regularly spaced re-

solvable scatterers results in a non-stationary RF
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echo. In this case, a time frequency analysis is

more suitable (Loughlin, 1996; Tacer and Lough-

lin, 1998), We can choose between quadratic re-

dundant time frequency representations (TFRs),

for example the Wigner distribution, and liner re-

dundant TFRs such as the short time Fourier
transform, or the WT. The traditional quadratic

TFRs are not suitable to multicomponent signals

such as the ultrasound RF echo because they pro-

duce cross terms. Nevertheless, quadratic TFRs

that suppress the cross terms are presented in

(Choi and Williams, 1989; Jones and Baraniuk,

1995; Stankovic, 1996). The method in (Stankovic,

1996) is especially interesting, since it introduces
quadratic TFRs that suppress the cross terms

while preserving the auto terms. In this study we

selected a linear TFR, namely the WT because of

its flexibility and the good time and frequency lo-

calization (Bentley and McDonnell, 1994). It is

chosen frequently for feature extraction in bio-

medical applications (Unser and Aldroubi, 1996).

The WT has also been used for time or frequency
decomposition in other fields. For example,

Drumheller et al. (1995) used the WT successfully

to identify and extract three acoustic components

from the measured impulse response.

The underlying idea in the WT decomposition

algorithm is to decompose the RF signal into the

coherent and diffuse components in accordance

with the point scatterer model for the RF data
(Eq. (1)). The two components overlap in the time

and frequency domain, therefore a time-frequency

analysis is used to perform the decomposition. The

selected TFR, i.e., the continuous WT is defined as

the convolution of yðnÞ with a scaled and dilated
version of an admissible wavelet w0ðnÞ (Torrence
and Compo, 1998):

W ðs; nÞ ¼
XN�1

n0¼0
yðn0Þw� ðn0 � nÞ

sfs

� �
; ð23Þ

where w is the normalized wavelet.
Before embarking on the decomposition, the

existence of a coherent component embedded in

the RF signal is tested using the Kolmogorov

Smirnov test for color field. More details about

this test can be found in (Georgiou and Cohen,

1998), Section 4. If the test indicates absence of a

coherent component, the diffuse component dðnÞ is
the RF echo yðnÞ itself. Otherwise, the RF echo

yðnÞ is decomposed into its diffuse dðnÞ and co-
herent pðnÞ components using the wavelet decom-
position described in (Georgiou and Cohen, 2001),

Sections 3 and 4. The underlying idea of the ex-
traction of the coherent component is simple.

Fluctuations in the wavelet power over the range

of scales are examined. Towards this end the scale-

averaged wavelet power (SAP) is used, i.e.:

W
2ðnÞ ¼ 1

J

XJ

j¼1
jW ðsj; nÞj2: ð24Þ

The SAP is used instead of the two-dimensional

wavelet power because we are interested only in
the time locations of the wavelet power concen-

trations.

The detection and time localization of the co-

herent scatterers is performed by thresholding the

SAP with the following threshold:

lw þ hrw; ð25Þ
h is a free parameter that needs to be tuned, lw be
the mean of the SAP, i.e.,

lw ¼ 1

N

XN�1

n¼0
W

2ðnÞ ð26Þ

and rw the standard deviation of the SAP around
its mean value,

rw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1
XN�1

n¼0
ðW 2ðnÞ � lwÞ

2

vuut : ð27Þ

Next the two components (or the one in the case of

no coherent component) are used to estimate the

features used in the tissue characterization. These

features reflect the changes that occur in the tissue

structure due to a disease, allowing us to discrim-

inate between healthy and diseased tissue. The
features of the coherent component are:

(1) the number of coherent scatterers per resolu-

tion cell Nc,
(2) the mean energy of the coherent scatterers En,

which reflects differences in acoustic imped-

ance between the large structures of breast

(ducts and lobules i.e., parenchyma) and the
surrounding tissue.
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The features of the diffused component are:

(1) the residual error variance of the diffuse com-

ponent r2,

r2 ¼ 1

N

XN�1

k¼0

r2

j1�
Pp

s¼1 as expfj 2pN ksgj2
; ð28Þ

(2) the Rayleigh scattering degree D, of the diffuse
component dðnÞ, which describes the discrep-
ancy between the empirical distribution P ðwÞ
of the innovation process of dðnÞ and the

Gaussian distribution G,

D ¼ sup
�1<w<1

jP ðwÞ � GðwÞj; ð29Þ

(3) the normalized correlation coefficient of the

diffuse component qN , which reflects the corre-

lations between neighboring diffuse scatterers
in the tissue and depends on the density of

the diffuse scatterers in the tissue,

qN ¼ det
½D
PN�1

k¼0 NSðkÞ

" #
¼

QN�1
k¼0 NSðkÞPN�1
k¼0 NSðkÞ

; ð30Þ

where ½D
 is a diagonal matrix which diago-
nalizes the Fourier matrix [F], i.e., ½F 
½r
½F 
y ¼
½D
, and its N diagonal elements fSðkÞ : k ¼ 0;
1; . . . ;N � 1g are the sampled psd of d.

4. Results

There are two important aspects of testing the
results of a tissue characterization method. The

first aspect refers to a meaningful presentation of

the results allowing easy interpretation. Towards

this goal we selected the ROC analysis because it

is the only method that can quantify the diag-

nostic capacity of a system independently of the

decision criterion (Metz, 1989). Details about the

empirical ROC computation that we use can be
found in (Georgiou et al., 2001). The second as-

pect refers to the size of the tumors that a tissue

characterization method can detect. In this study

we present results that are based on windows of

size 8 mm for the liver data 8 and 4 mm for the

breast data.

4.1. Results on liver tissue characterization

In this section results on data from in vivo scans

of liver tissue are presented. B-scan images of the

liver were obtained in the Radiology Department
of the Thomas Jefferson Hospital, Philadelphia,

PA. The B-scans were obtained using an Ultra-

Mark-9 ultrasound system (ATL, Bothel, WA)

using a transducer with a center frequency of 3.5

MHz, and a sampling frequency of 12 MHz.

Clinical images from both patients and volunteers

without any pathological report were examined.

The data length along the depth axis was set to 128
samples, i.e., 8 mm of tissue approximately. The 8

mm window is short enough to ensure local wide

sense stationarity of the signal, but also is long

enough to ensure accurate estimation of the para-

meters. The window slid across the lateral direc-

tion by 1 A-line at a time and the estimates were

recorded. The window also slid along the axial

direction by 16 samples (i.e., 1 mm), and the esti-
mates were recorded. The selection of the 1 mm

depth that the window slides was arbitrary. The

available database of liver B-scan images con-

tained 84 images of 34 volunteers and patients.

There were 44 liver B-scan images from 16 patients

with cancer metastasis. Regions of interest (ROIs)

on the tumor and away of the tumor were selected.

The size of the ROIs was 1.25 cm in axial depth
and 11 A-lines. The ROC curves for the average

spacing and the residual error variance are shown

in Fig. 2. The area under the ROC curve for the

average spacing is Az ¼ 0:748. The residual error
variance is the best parameter for liver tissue

Fig. 2. ROC curves for normal vs cancerous liver tissue:

(a) average scatter spacing m and (b) residual error variance r2.
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classification. The ROC curve is presented in Fig.

2(b). The area under the ROC curve is Az ¼ 0:981.
This parameter showed satisfactory diagnostic

ability.

4.2. Results on breast tissue characterization

In this study we used 155 ultrasonic breast scans

from 42 patients, obtained in the Radiology de-

partment of the Thomas Jefferson Hospital, Phila-

delphia, PA. A biopsy followed the ultrasound

examinations and there is a detailed diagnosis for

each patient. There are 37 carcinoma scans from

10 patients with in situ and infiltrating ductal
carcinoma. There are 33 scans from 7 patients with

fibrocystic changes and 3 patients with stromal

fibrosis. There were 85 scans from 22 patients with

fibroadenoma. The ultrasonic scans were obtained

using a flat linear broadband array transducer with

a nominal center frequency of 7.5 MHz on a

clinical imaging system UltraMark-9, HDI, Ad-

vanced Technology Laboratories, Bothell, WA.
The ATL system is a digital system. The frames

were acquired just after beam forming. The sam-

pling rate of the ATL system is 20 MHz. Two non-

overlapping ROIs per scan, one on the lesion and

another away from the lesion were selected by the

authors. The size of the ROI�s was 7.6–8 mm in

axial depth and 10 lines in all cases. The axial size

of the ROIs was chosen according to the size of
smallest lesion of the database. The ROIs were not

collected at the same depth because the tumors

were not located at the same depth. Nevertheless,

when possible, both ROIs corresponding to the

same scan were collected on the same depth. Small

variability was kept in the window size to eliminate

variabilities of the estimated features due to the

window size. The results for the 8 mm windows are
presented in Tables 1 and 2. To save space, we

present the area under the ROC curve (Az) and not

the ROC curve itself.

The residual error variance is the best param-

eter for classification. It works well for normal vs

cancer for both the diffuse scattering and the

diffuse and coherent scattering (all the corre-

sponding ROCs (Tables 1 and 2) have area larger
than 0.94). This parameter is also able to differ-

entiate between malignant and benign tissue

where benign tissue includes normal, fibrocystic
and fibroadenoma tissue. The area under the

ROC curve for the case of diffuse scattering is

Az ¼ 0:999 and for the case of coherent and dif-
fuse scattering Az ¼ 0:893.
We repeated the experiments for very short

windows (4 mm). The results (in terms of AzÞ are
presented in Tables 3 and 4. We note that for the

case of the 4 mm windows, no coherent part was
found in all but one cancer case, so there was no

ROC analysis for these cases (see the dashes in

Tables 3 and 4).

The tissue characterization for the windows of 4

mm is performed using the diffuse component

parameters, and more specifically the residual er-

ror variance r2. This feature gives Az ¼ 0:987 for
differentiation between normal and cancerous tis-
sue, and Az ¼ 0:994 for differentiation between

benign and malignant tissue.

Table 2

Area under the ROC curve (Az) for the subclasses of images for

which no coherent component was detected for the case of 8

mm windows

Categories D r2 logðqN Þ
Normal vs cancer 0.575 0.987 0.749

Normal vs fibroadenoma 0.538 0.936 0.868

Normal vs fibrocystic 0.574 0.947 0.912

Cancer vs fibroadenoma 0.554 0.955 0.724

Cancer vs fibrocystic 0.561 0.742 0.879

Benign vs malignant 0.568 0.999 0.887

Table 1

Area under the ROC curve (Az) for the subclasses of images for

which a coherent component was detected for the case of 8 mm

windows

Categories Nc En D r2 logðqN Þ
Normal vs cancer 0.598 0.751 0.557 0.947 0.747

Normal vs

fibroadenoma

0.558 0.862 0.744 0.945 0.863

Normal vs

fibrocystic

0.688 0.669 0.521 0.947 0.875

Cancer vs

fibroadenoma

0.558 0.866 0.706 0.501 0.718

Cancer vs

fibrocystic

0.727 0.862 0.514 0.501 0.744

Benign vs

malignant

0.576 0.763 0.542 0.893 0.758
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5. Discussion

This paper considers the liver and breast tissue

characterization problem. It presents a breast and
liver tissue model, appropriate algorithms for pa-

rameters extraction and an evaluation method.

The proposed method may be applicable to other

types of tissue after appropriate development. The

parameters extraction algorithms are based on a

decomposition approach. The RF echo of the liver

and breast is decomposed into a coherent and a

diffuse component which are related to the re-
solvable and unresolvable scatterers of the tissue

respectively.

Structural differences between the liver and

breast led us to develop two different decomposi-

tion algorithms. The first algorithm was developed

for the liver RF echo and was based on the quasi-

periodic structure of the liver lobules. The decom-

position allowed us to estimate several structural

parameters, such as the mean scatterer spacing of

the coherent component, the normalized correla-

tion and the residual error variance of the diffused

scatterers. The algorithm was applied to a large

database of liver scans. Empirical ROC analysis
was performed to evaluate the diagnostic abilities

of the proposed system. The residual error variance

and the average spacing of the coherent compo-

nents showed good discrimination between normal

and diseased tissue. The periodicity assumption for

the coherent component can not be used for the

breast because its structure is far from regular. To

relieve this assumption we used a more general
model for the coherent scatterers RF echo. TheWT

was the tool that allowed us to proceed with the

decomposition and estimate the unknown param-

eters. The decomposition was based on threshold-

ing the SAP of the WT. The proposed system

estimates concurrently parameters related to the

number and energy of the resolvable scatterers,

the correlations between neighboring unresolvable
scatterers and the density of the unresolved scat-

terers. These parameters are used as features for

cancer detection and for differentiating between

benign and malignant cases. The algorithm was

tested on a large database of breast scans. The

conclusion of our study indicates that the classifi-

cation between normal and diseased tissue can be

done reliably using the residual error variance of
the diffuse component. The proposed algorithm is

also capable of discriminating between benign and

malignant pathologies of the breast tissue. This is a

great advantage because most of the proposed tis-

sue characterization methods have difficulties in

discriminating malignant from benign tissue. This

study also showed that the proposed system is able

to detect and differentiate breast tissue abnormal-
ities for very small window sizes (4 mm). This is

very important because it implies that early detec-

tion of lesions based on ultrasound is possible.
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