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Abstract

A method toward unsupervised segmentation of synthetic aperture radar (SAR) images is proposed. In this method, the distribution of SAR
intensity image and the maximum a posteriori (MAP) algorithm is used to obtain an initial segmentation. Then according to the equivalence
between the solid heat diffusion model and image scale-space, multiscale anisotropic smoothing of the posterior probability matrixes is introduced
to remove the influence of speckle and to preserve important structure information. The effectiveness of this algorithm is demonstrated by

application to simulated and real SAR images.
© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The segmentation of synthetic aperture radar (SAR) images
has received an increasing amount of attention from the image
processing community [1]. Many segmentation approaches for
SAR images have been proposed over the last few years [2—16].
They can be divided into two classes, namely, (1) speckle noise
filtering is performed on raw SAR images followed by a seg-
mentation scheme similar to segmentation for optical images
[2-4]; (2) speckle reduction is integrated into the segmentation
process, making use of the intensity and structure information
of pixels in SAR images. Although the former is simple, com-
pared with the latter, it has two disadvantages. Firstly, better
segmentation tends to be obtained on images with large looks
when using the first class of segmentation approaches. If SAR
images are corrupted by strong speckle, strong filtering is re-
quired to minimize the influence of the speckle, which usually
deteriorates the performance of segmentation. Moreover, it is
difficult to control the extent of speckle filtering for high-quality
segmentation. Secondly, a speckle filter with good performance
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often introduces complex computation which may lead to the
inefficiency of the whole process.

Based on the problems mentioned above, recent researches
on SAR image segmentation mainly focus on integrating
speckle reduction into the segmentation process (see Refs.
[5-18]). Many segmentation approaches of SAR images in this
category have been reported in the literature. Lombardo [14]
proposed a statistically optimal segmentation scheme based
on a generalized maximum likelihood (ML) approach for po-
larimetric land applications. This technique is developed from
the work of Lombardo and Oliver [15,16]. It can be divided
into two steps: (1) the ML approach, exploiting the statistical
behavior of SAR image, is used to segment the image into re-
gions with homogeneous characteristics; (2) a split-merge test
utilizing the structural information of the image is implemented
to produce final segmentation and reduce the speckle noise at
the same time. The drawback of this method is that it uses
simulated annealing (SA) to maximize the objective function
estimating the unknown covariance matrix, and consequently
the computation time required is significant. Additionally,
an alternative approach, also reported in Ref. [14], based on
the eigenvalues from polarimetric decomposition, has a much
lower computation time. Anyway, the processing, consisting of
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two basic step and combining the statistical property and struc-
tural or spatial information of the image, has been a traditional
and important idea for improving the segmentation performance
of SAR images [14].

The Markov random field (MRF) model is probably one of
the most popular tools for incorporating the spatial dependence
among pixels into the segmentation [6-11]. Several attempts
based on MRF have been made, such as the iterative condi-
tional models (ICM) algorithm [10], the maximization of pos-
terior marginals (MPM) method [13], and the SA approach [6].
Results from these methods are encouraging, but MRF mod-
els introduce parameters which cannot be easily determined
and may lead to difficult optimization problems. Stewart et al.
[11] used a two-term objective function that balances a statis-
tical likelihood with a boundary smoothness constraint to in-
crease the segmentation accuracy on SAR image. This task was
framed as an optimization problem and found a minimum by
SA in the objective function over the solution space. Their re-
sults look very good. Unfortunately, since the convergence rate
of SA can be slow, the time-consumption problem still remains
in practice. Recently, Deng and Clausi [9] presented a novel
MRF-based segmentation algorithm, which adopts the widely
used maximum a posteriori (MAP)-MRF framework. In this
study, segmentation problem was formulated as maximizing the
product of a conditional probability and a prior probability. The
conditional probability is determined by feature information,
and the prior probability is calculated with spatial information.
Without the prior probability, this approach will degenerate into
a simplified expectation-maximization (EM) algorithm, which
heavily depends on initializations and is more vulnerable to trap
to a local maximum. As a result, this approach sometimes fails
to give a reasonable segmentation and thus has a poor average
performance.

Another noticeable approach is based on nonlinear heat dif-
fusion equation (anisotropic diffusion, AD), which surpasses
most other techniques in accuracy and robustness [12]. This
technique originates from the work of Perona and Malik [21],
and falls into the category of partial differential equation (PDE)
based image processing. Over the last few years, various AD-
based speckle suppression methods for SAR images have been
reported in the literature (see Refs. [17,19]), which demonstrate
the AD-based methods have good performance of de-speckling.
Typically, to suppress speckle while preserving edge informa-
tion, Yu and Acton [17] introduced an edge sensitive diffusion
method, called speckle reducing anisotropic diffusion (SRAD),
which defined an instantaneous coefficient of variation as the
edge detector for speckled imagery. This method is further de-
veloped by Aja-Ferndndez and Alberola-Lépez [19]. They ana-
lyzed a new AD filter based on Kuan’s filter compared with the
SRAD based on Lee and Frost filters. Both of the two methods
can preserve or even enhance prominent edges when remov-
ing speckle. However, they also have the drawbacks of blur-
ring and even eradicating detailed features of the image. Since
the AD-based technique has a good de-speckling performance,
it has been also applied to the segmentation of SAR images
in recent years. Haker et al. [12] proposed a knowledge-based
algorithm (also reported by Georgiou and Tannenbaum [18])

combining the Bayesian paradigm (exploiting the statistical be-
havior of the image) and AD (utilizing the spatial information
of the image). Assuming that each class of object follows a nor-
mal distribution with two parameters (i.e. mean and standard
deviation), they introduced a priori knowledge that the param-
eters of normal distribution are known or achieved by an of-
fline training phase from a set of sample images. In this way,
posterior probabilities are then obtained via Bayes’ rule and
smoothed several times by AD filter that is not limited to any
special selection. The final segmentation is obtained by MAP
classification of smoothed posterior probabilities. The results
of segmenting the moving and stationary target acquisition and
recognition (MSTAR) [20] SAR images show the good perfor-
mance of this technique. But the offline training (sometimes
one need to manually segment a few sample images [12]) to
acquire the priori knowledge cannot adapt to user’s need, and
it is very specific to the application at hand, hence hard to be
generalized into other domains. So it is in essence a supervised
method and also has a limit in practicality.

From a practical point of view, this study focuses on de-
veloping a method toward unsupervised segmentation of SAR
images. Considering the good de-speckling performance of the
AD-based segmentation and its dependence on prior knowl-
edge, we introduce a MAP [1,14-16] initial segmentation
combining negative exponential distribution of SAR intensity
image before the AD-based segmentation. Similar to the
previous techniques (e.g. the work of Lombardo and Oliver
[14-16]), our method mainly consists of two steps: the initial
segmentation and speckle removal combining statistical and
structural information. Firstly, MAP is applied to get an initial
segmentation by classifying each pixel of the image automat-
ically, as a priori knowledge of AD, and then the posterior
probability matrix of each class is derived from the initial seg-
mentation. Secondly, multiscale smoothing according to AD
first described by Perona and Malik [21] is performed on the
posterior probability matrix of each class in order to reduce
the influence of speckle. The prior information required by
AD is automatically introduced by MAP which is part of the
whole segmentation process; in this sense, the whole process
can be regarded unsupervised.

The paper is organized as follows. In Section 2 the relation-
ship between the solid heat diffusion model and image scale-
space is described. In Section 3 our segmentation method of
SAR images is presented in detail. In Section 4 some test re-
sults from a set of simulated and real data are given. Also, the
proposed algorithm is compared with a MRF-based method in
terms of accuracy and consumed time, and the limitations and
extensive application of the presented algorithm in this study
are discussed. Finally, some main conclusions of this investi-
gation are summarized.

2. The solid heat diffusion model and image scale-space

In recent years, algorithms based on the PDE derived from
the solid heat diffusion model have shown remarkable perfor-
mance in image processing tasks such as noise removal, im-
age enhancement, segmentation, etc. This type of method has
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Fig. 1. Solid heat diffusion: (a) isotropic; (b) anisotropic. TF represents
temperature field.

the advantage of preserving important structure information in
the image while simultaneously denoising the image. The solid
heat diffusion model is described as follows. Suppose that u is
the temperature field of 2 in plane medium and Q is the heat
energy. The energy Q varies with time ¢ as [22]

d—Q:// GZVu(t,x)dzx (H
dr 00

where ; is the normal vector of the region boundary 002, Vu is
the gradient field of u, ¢ is heat conductivity, and x represents
location of point in the plane. According to the conservation of
energy and divergence law, Eq. (1) is rewritten as

d—Q=/// VoVu(t,x)d3x 2
dr Q

Combining Eq. (1) with Eq. (2), the heat diffusion equation is

u;(t, x) = =div(c(x, y, 1) - Vu(t, x)) 3)

Ou(t, x)
ot
where div(-) is the divergence operator and c(x, y, t) represents
the diffusion coefficient. In the isotropic medium c(x, y, ¢) is a
constant. Fig. 1 shows two typical cases of solid heat diffusion.

If we regard the value of each point in the temperature field
as a gray level value in an image, heat diffusion becomes image
smoothing. Koenderink [23] and Hummel [24] point out that
convolving an image Iy with a Gaussian filter G is equivalent
to the solution of the standard diffusion equation

ol AL
P I Ili=0o=1o “)
where # becomes the scale parameter and A(-) is the Lapla-
cian operator. Scale space is thus related with the solid heat
diffusion equation. Eq. (4) is essentially an isotropic diffusion
equation. Perona and Malik [21] considers that important fea-
ture can be preserved while denoising if a proper AD equation
is constructed. Furthermore, Haker et al. [12] point out that im-
ages with multiplicative noise can also be denoised in this way.

3. Algorithm details
3.1. The initial segmentation

Image segmentation can be viewed as the problem of par-
titioning the image into different connected regions. Each
region is identified by a unique label. Let us consider a rect-
angular pixel lattice S = {s = (7, j), I<i<M,1<j< N},
where s = (i, j) denotes the coordinate of a point in the
M x N image. I = {I;; s € S} represent the corresponding
intensity image. After segmentation we can get a label image
X ={xs;5€8,xs €{l,2,..., p}}, where p denotes the num-
ber of different regions and is given in advance. Each region
can be regarded as a class.

Based on the coherent imaging mechanism, it is well known
that the negative exponential distribution provides a good model
for single-look SAR intensity data [1]. Therefore, we suppose
that each pixel belonging to class m in the SAR image satisfies
negative exponential distribution [8] (the iterating processing
in this section can also be used to other distributions). Formally

1 I

f(Islxszm;lémép)z—exp{——s} Q)
Om Om
where a,, is the parameter of negative exponential distribution
associated with class m. According to Bayes’ rule, the posterior
probability is
S Uglxs =m)P(xy =m)

Yo f Ul = D) P(xy =1)
Given the intensity value I; of pixel s, the segmentation is
equivalent to the MAP optimal solution,

max  {P(xs|ls)} @)
s P}

xse{l,2

P(xy =ml|l;) =

(6)

Xs = arg

Eq. (7) gives a form of initial segmentation, which is an
iterative and pixel-intensity-based scheme. After each iteration,
distribution parameters should be re-estimated as
@t 1<m< p) =argmax [] P8 ©)

0 .

m
L
Xg=m

The initial parameter ¢, can be estimated as follows: the

pixels in the image are ranked according to their intensity; the
ranked pixels are equally divided into p sets and 0,?1 (1<m<p)
is assigned the mean of the mth set. For a real scene, the priori
probability of each class P(x;) is unknown. So we assume the
same probability for a pixel belonging to each class (P(x; =
m)=1/p). After each iteration, the current posterior probability
that a pixel belongs to class m is computed and used as the
prior probability of the pixel belonging to class m for the next
iteration. The convergence of the segmentation is reached when
&ﬁn and 6';,“ are almost equal (in our experiments, we regard
that the algorithm get convergence when |6+ — 6 | <0.01).
So we can summarize the initial segmentation process as three
steps:

1. Supposing P (xy =m) =1/ p, the initial distribution param-
eters of each class are estimated.
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Fig. 2. Four neighbors of a pixel.

2. After ith iteration, we compute the distribution parameters
of each class for i + 1th iteration according to current seg-
mentation result by Eq. (8). The posterior probability that
a pixel belongs to class m is also computed and used as the
prior probability of the pixel belonging to class m at i + 1th
iteration.

3. Repeat step 2 until the convergence of the segmentation is
reached.

3.2. Speckle removing

The initial segmentation is a method based on pixel intensity
and cannot reduce the influence of speckle. So we use mul-
tiscale anisotropic smoothing of the posterior probability ma-
trix to remove the speckle. Let P ={P"™(s); s € S} represent
the posterior probability matrix of class m after the initial seg-
mentation, and P (s) be the posterior probability of pixel s
belonging to class m. As pointed out in Section 2, the smooth-
ing of posterior probability matrix is equivalent to solving the
anisotropic PDE [21]

opm
ot

=div(c(|VI|) - VI) )

where V() is the gradient operator, and | - | denotes the mag-
nitude. We consider the four nearest neighbors of a pixel (see
Fig. 2) and use the discrete form of Eq. (9). Then the solution
in an iterative form of Eq. (9) can be written as

PStJrl,m —pim Z (VPtlm)VPt m (10)

leny

where 7 denotes the neighborhood of pixel s, || is the num-
ber of pixels in 7,, P{""" is the posterior probability of pixel
s belonging to class m at iteration ¢, VP’ "= P — P
According to the selection strategy in Ref. [21] we have

c(VP™) =exp(—(|VP™[/K)?) (1)

where the constant K is a threshold of the edge strength map and
fixed either by hand at some fixed value [21], or estimated by the
method described by Canny [25]: a histogram of the absolute
values of the gradient throughout the image is computed, and
K is set equal to the 90% value of its integral at every iteration.
| - || is the norm operator.

Let F’}? = {F"Tl (s); s € S} be the posterior probability matrix
after smoothing P with scale parameter 7, and F’; (s) rep-
resent the posterior probability that pixel s belongs to class m
after smoothing. Then the final segmentation result is

Xy =arg max P 7(s); seS§ (12)

Sm<p

4. Experiment
4.1. The experiment results

The proposed segmentation method is applied to simulated
and real SAR images.

We begin with an 128 x 128 artificial image consisting of
three regions with different intensity values (Fig. 3(a)). The
effects of speckle are simulated by using a Gaussian random
number generator to produce a speckle image of the same size
as the artificial image. Since speckle noise is multiplicative,
the artificial image is multiplied by the speckle image pixel
by pixel. In order to evaluate the quality of each region in the
image, we use the concept of signal-to-noise (SNR) defined as

7
SNR =201log,, (—) (13)
o

where 1 is the average intensity of a region and ¢ is the stan-
dard deviation of noise. The SNR of each region in Fig. 3(b) is
0dB, which is a low SNR level. The initial segmentation result
is shown in Fig. 3(c). As we can see, this result is not satis-
factory because there are a large number of “false alarms” in
each region due to the speckle noise. The initial segmentation
utilizes only the intensity information of the tested image, so it
cannot remove the influence of speckle noise. Fig. 3(d) is the
final segmentation result with the scale parameter 7 = 15. We
can clearly see that an acceptable segmentation result compared
with the original image shown in Fig. 3(a) is obtained although
the SNR level of the corresponding SAR image is low. Further-
more, Fig. 3(d) also shows that the proposed method has the
ability to preserve the structure information of the image.

A set of MSTAR SAR images [20] has also been tested. It
contains SAR images of three types of vehicles, namely T72
(1273 images), BMP2 (1284 images), and BTR70 (429 images).
Taking Fig. 4(a) for example, it shows an original SAR image
of T72 with the radar’s depression angle of 15° and the target’s
orientation angle of 240.79°. This image mainly contains three
regions: background, target, and shadow. In the test images
three regions (shadow, target, and background) are quite distinct
from one another (see Fig. 4). We define each region in the
images manually and compare them with the results of the
proposed method. The pixels belonging to target or shadow in
the experiment results while belonging to background in the
manual segmentation are defined as false positives. Fig. 4(b)
is the initial segmentation result. There are many false alarms
in the initial segmentation result. Gaps and holes exist in both
target and shadow regions. Fig. 4(c) is the final segmentation
result with the scale parameter 7 = 7. In Fig. 4(c) we find
fewer false alarms than those in Fig. 4(b). Fig. 4(d) shows a
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Fig. 3. The experiment of a simulated SAR image: (a) original image; (b) the simulated SAR image (SNR =0dB) by adding the multiplicative noise to (a);
(c) the initial segmentation; (d) the final segmentation.
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Fig. 4. The segmentation result of a real SAR image: (a) original image; (b) the initial segmentation; (c) the final segmentation result (7 =7); (d) the final
segmentation result (7 =11).

Fig. 5. The posterior probability plots of the initial segmentation and the final segmentation: (a), (b), and (c) correspond to the posterior probability plots of
the initial segmentation of shadow, target, and background, respectively; (d), (e), and (f) correspond to those of the final segmentation of shadow, target, and
background, respectively.

more satisfactory segmentation result with the scale parameter
T = 11. The number of false alarms drops to zero.

According to the initial segmentation (Fig. 4(b)), the pos-
terior probability plots of shadow, target, and background are,
respectively, shown in Fig. 5(a)—(c). Fig. 5(d)—(f), respectively,
correspond to the posterior probability plots of shadow, target,

and background based on final segmentation in Fig. 4(d). We
can find that our method has a good performance of removing
false alarms and suppressing speckle.

We use 2986 SAR images in MSTAR dataset for further
analyzing the performance of our method. Firstly, the change
pattern of the average number of false alarms in each region
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Fig. 6. The curves of the number of false alarms varying with the scale
parameter.
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Fig. 7. The curves of the SNR values of each region varying with the scale
parameter.

(target, background, and shadow) with respect to the scale pa-
rameters is considered and corresponding curves are shown in
Fig. 6. We find that the average number of false alarms in each
region all has a descending tendency when the scale parameter
increases. Moreover, if the scale parameter 7 > 11, false alarms
due to speckle can be removed.

In order to verify the ability of our method to suppress the
speckle and to enhance the signal, the SNR of each region in the
initial segmentation result (7' = 0) and in the final results with
different scale parameters are computed for each tested image.
Fig. 7 shows the performance curves of the average SNR val-
ues in each region varying with the scale parameters. It shows
that the SNR value of each region gradually increases when the
scale parameter increases and quickly converges, which veri-
fies the effect of speckle suppression and signal enhancement
of this algorithm. When the scale parameter 7 > 6, it also can
be found in Fig. 7 that the SNR value about the background re-
gion has a slightly descending tendency with the increase in the
scale parameter. Conversely, the SNR values corresponded to

Table 1
The testing results of the images of different targets using our algorithm

T72 BMP2 BTR70
The number of target’s images 1273 1284 429
The average scale without false alarm 10.76 11.12 10.87
The average time in our algorithm (s) 4.39 4.28 4.27

Fig. 8. The segmentation result by applying the algorithm presented in
literature [8] to Fig. 4(a).

the target region and the shadow region tend to be stable. The
reason is as follows: when the scale parameter 7 increases, the
pixels due to the loss of target and shadow information are con-
fused with the background region and make the corresponding
SNR value decline.

All the experiments are accomplished in MATLAB code with
a hardware environment of PIII 500M CPU and 512M memory.
Table 1 presents the testing results by applying our algorithm
to three kinds of targets in MSTAR dataset. It is evident that
the segmentation results have zero false alarm for real MSTAR
SAR images when the scale parameter is about 11. The average
time of the speckle filtering approach based on AD in this study
for one MSTAR image is about 3.13s. Meanwhile, the time
consumed for the segmentation of each image is less than 4.5s.

4.2. Comparison with the MRF-based algorithm

A typical method used for SAR image segmentation is the
MRF-based one, which usually has a high accuracy at the cost
of a low speed. We compare our method with the MRF-based
one presented in Ref. [8]. Fig. 8 shows the segmentation result
of Fig. 4(a) by applying the algorithm in Ref. [8] with the num-
ber of iterations set to 100. For a direct and visual estimation,
the segmentation result of the MRF-based algorithm is not as
good as that of our method with the scale parameter 11.

Since there is no a priori knowledge of the extract location of
the segmentation boundaries, manual segmentation is assumed
to give the best fit in this study. In general, the actual position of
boundaries within a SAR scene is unknown. So, the goodness
measures are modified to compare the segmentation approaches
with manual segmentation. In this investigation, assuming that
the size of an original SAR image is M x N, we denote the
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label image obtained by segmentation as X = {£,; s € S, £ €
{1,2,..., p}}, whose size is also M x N. Correspondingly, R
represents the label image from manual segmentation for the
same original SAR image. Moreover, the error image is defined
as E =X — R. In order to compare the performance of the
above mentioned two methods, a measurement which evaluates
the accuracy of segmentation, called the percent of error pixels
(pep), is defined by us as

[

pep = U< N x 100% (14)
where / denotes the number of non-zero pixels in E. Ideally, the
pep value of a perfect segmentation should be equal to zero,
and the closer pep is to zero, the better the segmentation is.
Therefore, this measurement indicates the quality of the image
segmentation. We compute the pep values using the results of
three kinds of targets in MSTAR dataset by our method and
the MRF-based one in Ref. [8], respectively. The method in
Ref. [8] is also accomplished in MATLAB code and run on
the same CPU and memory as this paper’s method. Then, the
average measure of accuracy of each kind of target is obtained
by dividing the sum of the pep values of corresponding target
kind by the number of the targets.

Table 2 compares the two methods in accuracy and speed.
We can see that our method is faster and more accurate than
that presented in Ref. [8].

4.3. Discussion and extensive application

Much work remains to be done in future before the pro-
posed method can be used in a practical system. Although

Table 2
The comparison between two algorithms

Target The algorithm in literature [8] Our algorithm
Average Average Average Average
pep (%) time (s) pep (%) time (s)
T72 3.53 16.3814 0.61 4.39
BTR70  3.27 16.2175 0.54 4.27
BMP2 3.39 16.1732 0.56 4.28

experiments have testified that our method has a better perfor-
mance than using a method based on MREF, it is not entirely
unsupervised since a priori knowledge of the number of classes
p in segmenting SAR images is required. Furthermore, an opti-
mum choice of the scale parameter T of the anisotropic smooth-
ing is currently a problem under study. As discussed in Section
4.1, when the scale parameter T increases, the false positives
caused by speckle can be removed. But the increase in 7" will
also lead to loss of target and shadow information (see Fig. 4).
So how to automatically select 7 is an important issue. So far
we have no theoretical solution to this problem. We have also
attempted to find out whether T has a relationship with the size
of the targets and the spatial resolution of images or not. How-
ever, after utilizing many different targets, we still find no ap-
parent relationship between them. Maybe not only the targets’
size or the spatial resolution is related, but also the quality of
image such as SNR is also related with the choice of 7. In ac-
tual application, the empirical choice of T is needed.

Over the last few years, information extraction from SAR
images is still an active research area for many operational
SAR sensors that are becoming available in the very near future
[9,14,15,26]. The presented segmentation algorithm is used to
extract the water area in real SAR images. In this investigation,
the extraction of water area from SAR images uses a hierarchi-
cal process, which has three stages: (1) the image is segmented
to separate dark region and extract approximate contour of wa-
ter area as the initial contour; (2) snake model based on gra-
dient vector flow [27] is used to obtain more accurate contour
on the basis of the initial contour; (3) some small regions are
eliminated.

The experiment data were collected by an air-borne SAR
platform in the year of 2007. The dataset with 6m x 6 m res-
olution includes 50 scenes that contain different water areas
in China. The air-borne SAR platform operated at X-band and
collected data in stripmap mode with HH polarization.

As a direct and visual example, Fig. 9(a) shows a test SAR
image containing Wujiang river, in China. The image size is
1665 rows and 1665 columns. The segmentation image using
our algorithm is shown in Fig. 9(b). According to the applica-
tion of extracting the water area, we think that the radar returns
of objects are dominated approximately by three kinds of

A

Fig. 9. The result of extracting water areas in a test SAR image. (a) Original SAR image; (b) the result of segmentation; (c) the result of extracting water areas.
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scattering mechanisms. The river represents the weakest scat-
tering. Therefore, the number of classes p in segmenting SAR
images is 3. For all scenes in this application, we find that the
good segmentation can be obtained by setting 7 around 10.
So the choice of T is empirically justified. Fig. 9(c) shows the
extracting result of corresponding water area in Fig. 9(a). As
we can see, the contours of the water regions are extracted
accurately. Although some of the choices are empirical, it is
apparent that the presented segmentation algorithm is applied
successfully to water area extraction.

5. Conclusion

Segmentation is a key step in SAR image interpretation. A
new segmentation for SAR images combining MAP and AD
is proposed in this study. An initial segmentation is obtained
by MAP using intensity information of pixels, then multiscale
anisotropic smoothing is implemented on the posterior proba-
bility matrixes derived from the initial segmentation. The seg-
mentation results of simulated and real SAR images show the
feasibility and efficiency of our method. The technique pro-
posed in this study can be improved by smoothing the posterior
probability matrixes by the work of Yu and Acton [17] or other
AD filters [19,28,29]. More experiments will also be done by
using more real SAR data to find the selection of the value T
in our further work.
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