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Abstract

Various microarray experiments are now done in many laboratories, resulting in the rapid accumulation of microarray data in public
repositories. One of the major challenges of analyzing microarray data is how to extract and select efficient features from it for accurate cancer
classification. Here we introduce a new feature extraction and selection method based on information gene pairs that have significant change in
different tissue samples. Experimental results on five public microarray data sets demonstrate that the feature subset selected by the proposed
method performs well and achieves higher classification accuracy on several classifiers. We perform extensive experimental comparison of the
features selected by the proposed method and features selected by other methods using different evaluation methods and classifiers. The results
confirm that the proposed method performs as well as other methods on acute lymphoblastic-acute myeloid leukemia, adenocarcinoma and
breast cancer data sets using a fewer information genes and leads to significant improvement of classification accuracy on colon and diffuse
large B cell lymphoma cancer data sets.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The introduction of DNA microarray technology has made
it possible to acquire vast amounts of microarray data, raising
the issue of how best to extract and select features from this
data. Various methods have been proposed for extracting and
selecting features from microarray data. Principal component
analysis (PCA) is widely used to analyze image and speech
data. It is also used to extract features from microarray data
[1,2]. However, the features obtained through the method are
short of clear biological meaning and cannot help biologists
find important information genes [2]. This is especially impor-
tant in microarray data-based cancer classification. At present,
the most commonly used methods for selecting feature genes
from microarray data are filter methods that rank genes ac-
cording to some predefined criterion and select the top-ranked
genes. For example, t-test [3], signal-noise-rate (SNR) [4,5] and
Wilcoxon’s ranksum test (WRST) [6] are typical filter methods.
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Filter methods are easy to understand and implement; how-
ever, they ignore the interrelation of genes, this is inevitable to
lose some important information. In addition, the classification
accuracy of the feature genes selected by filter methods may
be lower because the top-ranked k genes are not guaranteed
to be the best among all subsets of k genes. Wrapper meth-
ods have also been widely used to select feature genes from
microarray data [7–11]. They evaluate alternative feature gene
subsets using the classification accuracy and select the feature
gene subset with the highest classification accuracy. Compared
with the feature genes selected by filter methods, the feature
genes selected by wrapper methods usually have higher classi-
fication accuracy.

Although various methods have been used to extract and
select features from microarray data, development of power-
ful and efficient feature extraction and selection approach to
improve the performance of cancer classification remains a
significant demand. In this study, we proposed a novel feature
extraction method that treats information gene pair, which is
highly correlative in one type of tissue sample and has signif-
icant change in another type of tissue sample, as atomic unit
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Fig. 1. The main processes involved in the proposed method.

extracts features from the classification models based on the
information gene pairs. Fig. 1 shows the main steps that the
proposed method extracts features. First, we construct the clas-
sification models based on information gene pairs and evaluate
their performance using classification accuracy. The top-ranked
nt classification models with higher classification accuracy are
input to the next step. Then, the nt classification models are di-
vided into two groups. Group 1 consists of classification mod-
els based on information gene pairs that are highly correlative
in class 1. Group 2 consists of classification models based on
information gene pairs that are highly correlative in class 2.
Subsequently, we use genetic algorithm (GA) to select an op-
timal subset of classification models from groups 1 and 2,
respectively, and extract feature subset from them. Finally, the
feature subset with the best performance is selected.

The rest of this paper is organized as follows. The method
of extracting features from microarray data is elaborated in
Section 2. In Section 3, we test our method on several mi-
croarray data sets and compare the performance of the features
selected by the proposed method with that of the features
selected by other methods. Finally conclusions are given.

2. Method

Definition. Different tissue samples, such as cancer and nor-
mal tissue samples or liver cancer and non liver cancer tissue
samples (both of which are cancer tissue samples), often are
examined in a microarray experiment. For two genes: g1 and
g2, examined in two types of tissue samples (for example, nor-
mal and cancer tissue samples), when they have the following
characteristics:

• They are highly correlative in class 1 (or class 2).
• The expression levels of g1 or/and g2 have significant

changes that make two types of samples separable

They are called information gene pair.
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Fig. 2. The expression levels of information gene pair: H06524 and D14812.
The x-axis represents the expression level of H06524, and the y-axis rep-
resents the expression level of D14812. The points marked “•” are normal
samples, and the cancer samples are marked by “ ◦ ”. The data set has been
preprocessed by taking logarithm of all values.

Figs. 2 and 3 show the distribution of expression values of
two typical information gene pairs. D14812 and H06524 are a
pair of information genes from colon cancer data [11], which
are highly correlative in the normal samples (correlation coef-
ficient is 0.93). The expression levels of D14812 in colon can-
cer samples are higher and the expression levels of H06524 in
colon cancer samples are lower, which make the colon cancer
samples and normal samples separable. Fig. 2 clearly shows
the above characteristics. D63874 and R59552 are another pair
of information genes from adenocarcinoma cancer data [12].
From Fig. 3 (classification model based on the pair of genes),
it can be seen that the pair of genes is highly correlative in
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Fig. 3. The expression levels of information gene pair: R59552 and D63874.
The x-axis represents the expression level of R59552, and the y-axis rep-
resents the expression level of D63874. The points marked “•” are normal
samples, and the cancer samples are marked by “ ◦ ”. The data set has been
preprocessed by taking logarithm of all values.

normal samples (correlation coefficient is 0.86) and the expres-
sion levels of D63874 have significant changes in normal and
cancer samples. The classification model based on the pair of
information genes gives 100% separation between normal and
cancer samples.

2.1. Classification model based on information gene pair

Suppose two types of tissue samples are examined in a mi-
croarray experiment, k is the number of genes, n1 and n2 (n=
n1 +n2) are the number of samples in classes 1 and 2, respec-
tively, we can describe the microarray data using two matrices:
Y =(yip)k×n, X=(xiq)k×n, where yip(xiq) denotes the expres-
sion level of the ith gene in the pth (qth) sample which be-
longs to class 1 (2). Given the ith gene and the j th gene (a pair
of information genes) are highly correlative in class 1, for the
pth sample from class 1, we can predict yip via the following
regression model:

ŷijp = �̂ij0 + �̂ij1yjp, 1�p�n1. (1)

�̂ij0 and �̂ij1 are estimated from a set of data, (yi1, yj1),
(yi2, yj2), . . . , (yin1, yjn1), using the least squares methods.

Define residual value eijp = |yip − ŷijp| as the difference
between the observed value yip and the predicted value ŷijp.
For all the samples from class 1, we have

E1ij = {eijp|eijp = |yip − �̂ij0 − �̂ij1yjp|, 1�p�n1}. (2)

For the qth sample from class 2, we still use the model (1) to
predict xiq , then the predicted value is

x̂ijq = �̂ij0 + �̂ij1xjq, 1�q �n2.

The residual value is eijq = |xiq − x̂ijq |.
For all the samples from class 2, we have

E2ij = {eijq |eijq = |xiq − �̂ij0 − �̂ij1xjq |, 1�q �n2}. (3)

Here, model (1) projects the expression values of the ith gene
in two types of samples into two subsets: E1ij and E2ij .
The problem of discriminating two types of samples has
become the problem of discriminating the elements in two
subsets. In the following, we give the classification rule of
regression model according to the optimal threshold value ed

which minimizes the error of discriminating the elements in
two subsets:E1ij and E2ij .

Define function

fi(e) = count({eijp < e, eijp ∈ E1ij , n1�p�1}
∪ {eijq > e, eijq ∈ E2ij , n2�q �1}), (4)

where e is a real number, count (·) denotes the number of
elements in the subset. Let e = e1, fi(e1) = max(fi(e)), the
threshold value ed is

ed = (max({eijp|eijp �e1, eijp ∈ E1ij })
+ min({eijq |eijq > e1, eijq ∈ E2ij }))/2. (5)

Thus, selecting a sample randomly from the total samples, the
expression levels of the ith and the j th gene in the sample are wi

and wj , respectively, classification can be achieved according
to the following rule:

Assign the sample in class 1 if |wi − ŵi |�ed , namely,

|wi − �̂ij0 − �̂ij1wj |�ed , and in class 2 otherwise.
Fig. 3 provides a geometric interpretation of the proposed

classification model. In Fig. 3,

e′ = max({eijp|eijp < e1, eijp ∈ E1ij }),
e′′ = min({eijq |eijq < e1, eijq ∈ E2ij }),
ed = (e′ + e′′)/2,

solid line is a regression line, two dash lines which are paral-
lel to the regression line are decision boundary. The samples
between two dot lines are assigned to normal samples (class
1), the others are assigned to adenocarcinoma cancer samples
(class 2). Classification model based on D63874 and R59552
can classify adenocarcinoma cancer samples and normal
samples 100%.

2.2. Classification model evaluation and selection

There exist a large number of the proposed classification
models in a microarray data; however, many of them could be
either redundant or even irrelevant to the classification task;
thus, we need to filter out those redundant or irrelevant classi-
fication models and select the classification models with better
classification performance.

There are three methods that are widely used in evaluating the
performance of classification model [9]. When the collection
of total samples are used as both training and test data sets, the
classification accuracy is referred to as the within sample classi-
fication accuracy (WSCA). When the training and test samples
are separate data sets, the classification accuracy is referred to
the out-of-sample classification accuracy because test samples
are used for the calculation of accuracy. Bootstrapping method
is developed for overcoming the problems of small data set and
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better assessing the performance of classification model. The
classification accuracy obtained through the method is called
bootstrapping accuracy. Compared with the above two methods,
bootstrapping method needs more computational time.

In the microarray data that includes k genes and n(n = n1 +
n2) samples (n1 and n2 are the number of samples in classes
1 and 2, respectively), there exist 2 ×n× (n− 1) classification
models. It needs too much time to evaluate all classification
models. To reduce computational time and obtain the classifica-
tion models with better classification ability, the classification
models based on gene pairs whose correlation coefficients are
lower than threshold �h in classes 1 and 2 are not evaluated.
The others are evaluated using a two-step procedure. (1) Each
classification model is first evaluated using WSCA. The top-
ranked nt ones are input to the next phase. (2) Bootstrapping
procedure is used to further evaluate the performance of the
selected nt classification models. There are a number of vari-
ants of bootstrapping method. Here we used a straightforward
one (see Ref. [13]). The nt classification models are sorted in
decreasing order based on bootstrapping accuracy and divided
into two groups. Group 1 consists of classification models based
on information gene pairs that are highly correlative in class 1.
Group 2 includes the classification models based on informa-
tion gene pairs that are highly correlative in class 2. We ex-
tract feature subsets from the top-ranked classification models
in groups 1 and 2, respectively.

2.3. Feature extraction from classification models

In Section 2.1, classification model based on the informa-
tion gene pair (the ith gene and the j th gene) projects the ex-
pression values of the ith gene in two types of samples into
two subsets:E1i and E2i . For m1 pairs of information genes,
(i1, j1), . . . , (im1, jm1), which are highly correlative in class 1,
we can construct m1 linear regression models that project the
expression values of the m1 genes (i1, i2, . . . , im1) in two types
of samples into m1 pairs of subsets:

(E1i1j1 , E2i1j1), (E1i2j2 , E2i2j2), . . . , (E1im1jm1 , E2im1jm1).

For the pth sample from class 1 and the qth sample from class
2, we have

�1p = 1

m1

m1∑
l=1

eiljlp, eiljlp ∈ E1il jl
, (6)

�2q = 1

m1

m1∑
l=1

eiljlq , eiljlq ∈ E2il jl
. (7)

Here we choose �1p as the feature of the pth sample and �2q

as the feature of the qth sample. For all samples in microarray
data, we have feature subset:

U = {�11, �12, . . . , �1n1, �21, �22, . . . , �2n2}. (8)

Similarly, for the m2 pairs of information genes, (i′1, j ′
2), . . . ,

(i′m2, j
′
m2), which are highly correlative in class 2, m2 linear

regression models based on the m2 pairs of genes project the

expression values of the m2 genes (i′1, i′2, . . . , i′m2) in two types
of samples into m2 pairs of subsets:

(E1i′1j ′
1
, E2i′1j ′

1
), (E1i′2j ′

2
, E2i′2j ′

2
), . . . , (E1i′m2j

′
m2

, E2i′m2j
′
m2

).

For the pth sample from class 1 and the qth sample from class
2, we have

�1′
p = 1

m2

m2∑
l=1

ei′l j ′
l p

, ei′l j ′
l p

∈ E1i′l j ′
l
, (9)

�2′
q = 1

m2

m2∑
l=1

ei′l j ′
l q

, ei′l j ′
l q

∈ E2i′l j ′
l
. (10)

Here we can also choose �1′
p as the feature of the pth sample

and �2′
q as the feature of the qth sample. For all samples in

microarray data, we have the second feature subset:

U ′ = {�1′
1, �1′

2, . . . , �1′
n1, �2′

1, �2′
2, . . . , �2′

n2}. (11)

2.4. Feature selection

The classification performance of the features extracted from
the top-ranked m classification models in group 1 (or 2) accord-
ing to the method described in Section 2.3 is not guaranteed to
be the best. Here we employ GA to find an optimal subset of
classification models from the top-ranked classification models
in group 1 or 2 and extract feature subset from them.

GA is an effective evolutionary optimization method [14].
It includes several components: chromosome (a mathematical
entity, not the biological chromosomes), fitness function, selec-
tion operator, mutation operator and crossover operator. Chro-
mosome is the core unit that has been used as a binary encoded
representation of the solutions to the optimization problem. In
order to use the GA, a set of chromosomes is first constructed
to form a “population”. Then, the population of chromosomes
are evaluated according to the required fitness function and as-
signed a probability of survival proportional to their fitness.
Subsequently, the GA manipulates the population of chromo-
somes using selection, crossover and mutation operators and
passes them on to the next generation. The whole process is re-
peated until the population converges to a satisfactory solution
or after a fixed number of generations.

GA is applied to our problem to find an optimal subset of
classification models. Before GA is used to find an optimal
subset of classification models, several parameters must be de-
termined. In this study, the length of each chromosome is l,
and each classification model occupies 1 bit. Value “1” or “0”
of any bit means the present or absent of the corresponding
classification model. The population size used is 50. The fea-
tures extracted from the top-ranked classification models may
obtain better classification accuracy at the beginning of GA,
and therefore we initialize the population of chromosomes ran-
domly using the top-ranked l classification models. To ensure
that the best chromosomes are most likely to survive in the sub-
sequent generation, the best two chromosomes are entered into
the respective next generation, and the remaining 48 chromo-
somes are filled based on sampling that is weighted according
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to the relative fitness of the chromosomes in the parent gener-
ation (probabilistically). Relative fitness is

fri = fi

/
48∑

k=1

fk, 1� i�48,

where fi is the fitness value of ith chromosome. The probabil-
ities of crossover and mutation are 0.9 and 0.05, respectively.
Control parameters in these ranges have been proposed by sev-
eral researchers to guarantee good performance on carefully
chosen testbeds of objective functions [15]. Stopping criteria
is the number of generations is larger than 200 and increase in
optimal fitness value is lower than 0.0001 for 20 cycles.

The goal of finding an optimal subset of classification mod-
els is to extract feature subset that achieve the same or better
classification performance using fewer genes. Therefore, we
evaluate the performance of a subset of classification models us-
ing the performance of the feature subset extracted from them.
The performances of feature subset contain three terms: (1) the
classification accuracy of feature subset, (2) the margin of the
classifier trained by feature subset and (3) the number of genes
involved in feature subset. If feature subsets extracted from two
subsets of classification models achieve the same classification
accuracy, while the margin of the classifiers trained by them is
different, the feature subset that can train classifier with larger
margin is preferred. If two feature subsets have the same clas-
sification accuracy and margin, the subset with fewer genes is
preferred. For the three terms, accuracy is our major concern.
The next important term is the margin of classifier. To combine
the three terms, we used the following fitness function:

fitness =
⎧⎨⎩Acc + 10−4 (LC−Fn)

LC if Acc < 1,

Acc + 10−2 Mg
MM + 10−4 (LC−Fn)

LC if Acc = 1,

where Acc is the WSCA of the feature subset and Fn is the
number of gene pairs involved in the features subset. LC
is the length of chromosome. Mg/MM reflects the magni-
tude of classifier margin. The WSCA of feature subset is
computed through the same classification rule of discrim-
inating the subsets: E1ij and E2ij (see Section 2.1). For
example, the WSCA of feature subset U (see formula (8):
U = {�11, �12, . . . , �1n1, �21, �22, . . . , �2n2}, is computed
using the following the rule:

Selecting a sample randomly from the total samples (its fea-
ture value is �i ), assign the sample in class 1 if |�i |��d and
in class 2 otherwise.

�d is the optimal threshold value that minimizes the error
of discriminating the elements in two subsets: {�11, �12, . . . ,

�1n1}, {�21, �22, . . . , �2n2}.
If Acc is equal to 100%, Mg is given by

Mg = min(�21, �22, . . . , �2n2)

− max(�11, �12, . . . , �1n1).

According to formula (8), MM is given by

MM = abs

(
1

n1

n1∑
i=1

�1i − 1

n2

n2∑
i=1

�2i

)
.

The accuracy term ranges roughly from 0.50 to 1. Mg/MM
ranges from 0 to 1. The third term ranges from 0 to 0.0001.
Based on the weights that we have assigned to each term, the
accuracy term dominates the fitness value. This implies that,
when the accuracy is lower than 100%, the individuals with
higher accuracy will outweigh individuals with lower accuracy,
no matter how many feature genes they contain, when the ac-
curacy achieves 100%, the individuals with larger margin will
outweigh individuals with smaller margin, no matter how many
feature genes they contain.

The choosing of the weights of the three terms depends on
many factors; we need to find the best balance between model
compactness and classification performance. Under some cases,
we prefer higher classification accuracy, no matter what the
cost might be. If this is the case, the weight associated with the
accuracy term should be very high. Under different situations,
we might favor more compact models over accuracy, as long
as the accuracy is within a satisfactory range. In this case, we
should choose a higher weight for the third term.

3. Experiments

3.1. Data sets

We applied the proposed method to analyze five public mi-
croarray data sets: diffuse large B cell lymphoma (DLBCL)
[10], colon cancer [11], adenocarcinoma cancer [12], acute
lymphoblastic leukemia (ALL)/acute myeloid leukemia (AML)
[16] and breast cancer data [17]. The DLBCL data consist
of 4026 genes and 42 samples (21 germinal center B-like
DLBCL and 21 actived B-like DLBCL). The data were orig-
inally filtered and log-transformed (base 2). The colon cancer
data contain 62 tissue samples (22 normal tissue samples and
40 tumor tissue samples) and 2000 genes. The adenocarcinoma
data set for discrimination between adenoma, adenocarcinoma
and normal tissue samples consists of 7457 genes and 36 sam-
ples (18 normal tissue samples and 18 cancer tissue samples).
ALL/AML data set has 12 582 genes and 52 samples (24 ALL,
28 AML). The breast data set, which was produced for the clas-
sification of BRCA1 mutation and others (7 BRCA1 mutation
samples and 15 BRCA2 samples and sporadic samples), con-
sists of 3226 genes and 22 samples. In the present work, the
preprocessing and/or log transformation are performed on the
data sets prior to analysis, this includes imputation of missing
values in DLBCL data set (imputed by the KNN Impute algo-
rithm [18] and log-transformation.

3.2. Experimental results

We performed a sequence of experiments in which we set the
threshold value �h to be 0.70, 0.75, 0.80 and 0.85, and evaluated
classification models based on information gene pairs whose
correlation coefficients are higher than �h. Here we only report
the experimental results �h is 0.75 because the experimental
results with different �h values are similar.

Among all classification models based on gene pairs, there
are 456 ones with 100% WSCA for ALL/AML cancer data,
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146 for adenocarcinoma cancer data and 2322 for the breast
cancer data. The reason that so many classification models with
100% classification accuracy are found in breast cancer data
may be due to the small sample size in the breast data set. The
number of the classification models whose WSCA is over 95%
reaches to 1987 for ALL/AML, 1200 for adenocarcinoma, and
4000 for breast cancer data, respectively.

Because when the total samples are used to evaluate the
accuracy of classification model, it is not clear that whether
the two-gene model can obtain lower generalization error rate.
To get a realistic estimate of classification accuracy, we used
bootstrapping procedure to further examine the classification
performance of the top-ranked nt classification models. We
randomly drew 200 bootstrapping sample sets from the total
sample set and calculated the bootstrapping accuracy. As a re-
sult, there are five classification models with 100% bootstrap-
ping accuracy to be identified for ALL/AML data set, eight for
adenocarcinoma cancer data set, and three for breast cancer
data set, respectively. The bootstrapping accuracy of the top-
ranked 2000 classification models from each data set is shown
in Fig. 4. Although the bootstrapping accuracy of classifica-
tion models is somewhat lower than their WSCA, the boot-
strapping accuracy of most classification models is still very
high. The number of classification models whose bootstrapping
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Fig. 4. The bootstrapping classification accuracy of the top-ranked 2000
classification models from breast, ALL/AML, adenocarcinoma, DLBCL and
colon cancer data.

Table 1
The number of classification models in groups 1 and 2

Data Group Number The description of the corresponding information gene pairs of classification models

Adeno-carcinoma 1 1700 Highly corrective in cancer samples
2 300 Highly corrective in normal samples

ALL/AML 1 1486 Highly corrective in ALL samples
2 514 Highly corrective in AML samples

Breast 1 4870 Highly corrective in BRCA1 mutation samples
2 130 Highly corrective in BRCA2 and sporadic samples

Colon 1 1782 Highly corrective in normal samples
2 218 Highly corrective in cancer samples

DLBCL 1 2000 Highly corrective in germinal center B-like DLBCL samples
2 0 –

accuracy is over 95% reaches to 1374, 448, 1350 for ALL/AML,
adenocarcinoma, and breast cancer data set, respectively. That
a large number of excellent classification models are found
demonstrate the proposed method performs well in finding ex-
cellent classification models. This also provides more oppor-
tunity for biologists to choose disease diagnosis microarray
according to the experiment conditions.

For colon cancer data set, the WSCA of all the classifi-
cation models is lower than 100%. The classification model
based on information gene pair, D14812 (human mRNA for
ORF, complete cds) and H06524 (gelsolin precursor, plasma
(human)), has the highest WSCA (93.55%), it has also the
highest bootstrapping accuracy (91.59%). For DLBCL cancer
data, there exist no classification model with 100% WSCA.
The classification model based on information gene pair,
GENE2760X_17204 and GENE3332X_13394, has the highest
WSCA (97.62%). Classification model based on information
gene pair, GENE1063X_16443 and GENE3330X_19288, has
the highest bootstrapping accuracy (92.85%). Obviously, com-
pared with the above three data sets, the colon and DLBCL
cancer data sets have more complex structure.

Next, we used the method described in Sections 2.3 and
2.4 to find an optimal subset of classification models from
the top-ranked classification models in group 1 or 2 and ex-
tracted feature subset from them (Table 1 lists the number of
classification models in groups 1 and 2, nt = 2000). When
the length of chromosome is different, the performance of
the extracted feature subset may be different. To extract ex-
cellent feature subset from classification models in groups 1
and 2, respectively, we performed a sequence of experiments
in which we set the length of chromosome to be 10, 60, 110,
160 and 210, respectively. The experimental results on the five
data sets are listed in Tables 2 and 3.Surprisingly, the best
classification accuracy of the feature subsets extracted from
the five data sets is all 100%. This indicates the proposed
method can extract excellent features from microarray data.
For colon cancer data set, when the length of chromosome
is 10, the classification accuracy of feature subset extracted
from group 1 is lower than 100%; maybe this attributes to
the absentation of the feature subset with 100% classifica-
tion accuracy among the top-ranked 10 classification models;
when the length of chromosome is 160 and 210, respec-
tively, the best WSCA of running 200 generation is lower
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Table 2
The experimental results in group 1

Data LC OFVa WSCA
(%)

Mg/MM Fn

Adeno-carcinoma 10 1.00608 100 0.602 4
60 1.00847 100 0.840 18
110 1.00810 100 0.802 23
160 1.00750 100 0.743 42
210 1.00736 100 0.728 51

ALL/AML 10 1.00424 100 0.418 4
60 1.00828 100 0.819 7
110 1.00843 100 0.835 17
160 1.00824 100 0.816 32
210 1.00831 100 0.823 45

Breast 10 1.00852 100 0.850 8
60 1.00911 100 0.905 26
110 1.00922 100 0.915 38
160 1.00950 100 0.943 49
210 1.00934 100 0.928 76

Colon 10 0.96781 96.774 – 3
60 1.00254 100 0.245 6
110 1.00166 100 0.159 28
160 0.96782 96.774 – 30
210 0.96782 96.774 – 43

DLBCL 10 1.00260 100 0.255 5
60 1.00531 100 0.525 22
110 1.00570 100 0.562 23
160 1.00513 100 0.506 47
210 1.00510 100 0.503 61

aOptimal fitness value.

than 100%; the reason for this result could be that the search
space becomes larger and larger (for reaching the optimal fea-
ture subset, the program needs to run for a longer time) and the
colon cancer data have more complex structure. From Tables 2
and 3, we can see that the Mg/MM of colon cancer data is the
least. This indicates colon cancer data are more complex and
difficult to classify.

3.3. Comparison with other methods

To further evaluate the performance of the proposed method,
we compared the proposed method with the previously devel-
oped methods. Recent studies related to ALL/AM [19], adeno-
carcinoma [20], breast cancer [21–23] colon [7,9,24–26] and
DLBCL [7,8] were chosen as targets for comparison. It is some-
what difficult to directly compare the proposed method with
the above methods because they each employed different clas-
sifiers and evaluation strategies to test the features selected by
them. Here we performed a comparison study exactly follow-
ing their evaluation procedures.

Compared with colon and DLBCL data, adenocarcinoma,
ALL/AML and breast cancer data have more simple struc-
ture. Many methods obtain 100% leave-one-out cross valida-
tion (LOOCV) accuracy in the three data sets. Wang et al. [19]
identified 23 genes that can classify ALL/AML data 100%.

Table 3
The experimental results in group 2

Data LC OFVa WSCA
(%)

Mg/MM Fn

Adeno-carcinoma 10 1.00643 100 0.641 8
60 1.00885 100 0.879 23
110 1.00928 100 0.922 46
160 1.00936 100 0.930 70
210 1.00938 100 0.933 98

ALL/AML 10 1.00685 100 0.682 7
60 1.00890 100 0.883 21
110 1.00914 100 0.908 48
160 1.00915 100 0.909 59
210 1.00907 100 0.901 94

Breast 10 1.00830 100 0.826 6
60 1.00974 100 0.970 33
110 1.00971 100 0.965 43
130 1.00975 100 0.970 59

Colon 10 1.00015 100 0.009 4
60 1.00359 100 0.351 10
110 1.00370 100 0.362 24
160 1.00299 100 0.292 53
210 1.00315 100 0.308 65

aOptimal fitness value.

Jaeger et al. [20] found 10 genes with 100% classification
accuracy from adenocarcinoma cancer data. Cho et al. [22]
obtained a subset of genes that produce zero misclassifica-
tion on the breast cancer data. Lee et al.’s [23] method also
produced zeros misclassification over three models that have
27, 17 and 10 genes, respectively. The proposed method and
the above methods are not different in classification accuracy.
However, in terms of efficiency and simplicity, one can ar-
gue that the proposed method is superior since the proposed
classification model based on the best information gene pair
only uses a pair of genes and an interpretable decision rule.
The number of genes involved in the proposed classification
model is significantly smaller than the number of genes in other
methods. Although Cho et al. [21] also used a relatively small
number of genes to classify breast cancer data set, the perfor-
mance of their method is significantly worse than that of the
proposed method. Table 4 lists the number of genes involved
in different methods. Accurate diagnoses can be achieved us-
ing only a pair of genes. This makes cheap diagnostic mi-
croarray possible, because a microarray needs only two genes
spotted on it instead of thousands of genes. This also reduces
complexity of experiments and increases efficiency of disease
diagnosis.

For colon cancer data, Xiong et al. [9] employed the sequen-
tial forward selection (SFS) algorithm and support vector ma-
chine (SVM) to selected feature genes from it; the best LOOCV
accuracy of genes selected by them is 88.71%. Li et al. [25]
combined SFS algorithm and Fisher’s linear discriminant anal-
ysis to select feature genes that can discriminate between colon
cancer data, and get 96.66% classification accuracy according
the their evaluation method (training set included 95% of the
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Table 4
The number of genes involved in different methods

Methods The number of feature genes

(1) ALL/AML data set
Wang et al. [19] 23
Proposed 2

(2) Adenocarcinoma
Jaeger et al. [20] 10
Proposed 2

(3) Breast cancer data set
Cho et al. [21] 3 (77.3%)a

Cho et al. [22] 21
Lee et al. [23] 10, 17, 27
Proposed 2

aThe LOOCV accuracy of three feature genes selected by Cho et al. [21]
is 77.3%.

total samples). Liu et al. [26] employed the ensemble neural
network method to select feature genes and obtained 91.19%
LOOCV accuracy. The above methods demonstrated the
validity of their subset of genes by different evaluation meth-
ods after the completion of gene selection procedure. We fol-
lowed their evaluation methods to further test the performance
of our feature subset with theirs. Li et al. [7] combined GA
and k-nearest neighbor (KNN) classifier to identify 50 most
frequently selected genes that can discriminate between colon
cancer data with higher classification accuracy. Li et al. [24]
obtained 23 most frequently selected genes using an ensemble
decision approach. Li et al.’s [7,24] methods are different from
conventional wrapper methods. They first selected hundreds of
gene subsets with higher classification ability using conven-
tional wrapper methods, and then computed the frequency of
each gene appearing in the selected hundreds of gene subsets.
Finally, the genes with higher frequency are chosen as feature
genes. Li et al.’s [7,24] tested the performance of their gene
subsets using the KNN and SVM, respectively. Here we also
compared the LOOCV results of their gene subsets with ours.
Fig. 5 shows the comparison results.

For DLBCL data, Li et al. [7] identified 50 most frequently
selected genes using GA and KNN classifier. Li et al. [8] also
reported their average classification performance of the 7(5)
genes obtained by combining GA and SVM (KNN) on the data
set. Li et al. [7,8] evaluated the performance of their genes using
different methods. In order to compare with their methods,
we also employed the same classifiers and evaluation methods
to test the performance our feature subset. Table 5 lists the
comparison results.

From Fig. 5 and Table 5, we can see that the proposed method
obtains satisfactory results on colon and DLBCL data sets. To
our knowledge, this is the best result of the two data sets so
far. Clearly, based on classification accuracy alone, our feature
selection method is better, or at least comparable to other meth-
ods. Also, we find that the features selected by other methods
can usually get better results on a certain classifier but may
get worse results on the others. For example, Li et al. [8] ex-
tracted features by combining GA and SVM (GA–SVM). In
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Fig. 5. The accuracy of features selected by six methods (colon cancer data).

Table 5
The classification accuracy (%) of the features selected by different methods
on DLBCL data

Methods SVM KNN (k = 1, 3, 5)

Li et al. [7]a 66.67 64.29/64.29/69.05
Li et al. [8]b 92 95 (k = 5, GA–KNN)
Li et al. [8]b 99 (GA–SVM) 65 (k = 3)
Proposedc 100 100/100/100

The best classification accuracy is highlighted in boldface.
aLOOCV accuracy.
bFive-fold cross validation accuracy.
cThe LOOCV accuracy and five-fold cross validation accuracy.

order to compare their algorithm with the algorithm of com-
bining GA and KNN (GA–KNN), they also combined GA
and KNN to select feature genes. The features selected by
GA–SVM have better classification performance on SVM clas-
sifier, while on KNN classifier they only obtain 65% classifi-
cation accuracy. However, our features obtain best results on
SVM and KNN. Therefore the features selected by the proposed
method have better generalizability. It also indicates that the
proposed method can effectively extract the intrinsic property of
microarray data.

To compare the computational cost of different methods, we
performed more experiments on colon cancer data with a com-
plex structure. Feature gene selection methods generally fall
into one of the two categories: filter and wrapper approaches.
Filter methods usually first choose top k (k = 50 in this study)
genes as feature genes and then employ classifiers, such as
KNN [5] and SVM [5,27]). SNR and t-test are typical filter
methods [3–5], they are chosen as targets for comparison.
Wrapper methods usually combine classifiers and fast search-
ing algorithm for finding an optimal set of genes [7–9]. Here
we compared the computational costs of the proposed method
with those of typical wrapper method: GA–KNN (GA–KNN
indicates GA and KNN are combined for identifying an



J. Li et al. / Pattern Recognition 41 (2008) 1975–1984 1983

Table 6
LOOCVl classification accuracy (%) and computational costs of different
methods on colon cancer data

Methods Time Acc (%)

t-Test (KNN)a 2.02 s 91.94
SNR (KNN)a 2.06 s 91.94
GA–KNN 3.37 h 91.94
Li et al. [7] 33.86 h 93.54
Li et al. [8] 59.33 h 90.32
Proposed 25.54 h 100

aKNN classifier is used (k = 5).

optimal set of genes). Li et al.’s [7,24] methods are different
from conventional wrapper methods. We also compared them
with the proposed method. The LC of GA is 50 and other
parameters of GA are the same as these in the above wrapper
methods. All the algorithms are written using Matlab language
and run on a PC with 2.4 GHz Pentium III CPU running win-
dows XP. Table 6 lists the computational costs and LOOCV
accuracy of different methods. It can be seen from Table 6
that filter methods occupy the least computational time and Li
et al.’s[7,8] methods need most computational cost. Compared
with GA–KNN, the proposed method needs more computa-
tional time and has better classification performance.

4. Conclusions

Information gene pairs are highly correlative in one type of
sample; this indicates that they inter-regulate or get involved
in the same biological processes such as cell cycle, metabolic
pathway, signaling transduction pathway, and genetic regula-
tory pathway. The expression levels of one or/and two genes
from a pair of information genes have significant changes in
another type of sample means that the relations of the pair of
information genes in different types of samples have changed.
If the pair of information genes is still highly correlative in
another type of sample, this indicates that inter-regulation in-
tensity between the pair of genes has changed; if the pair of
information genes is no longer highly correlative in another
type of sample, this indicates that inter-regulation relation be-
tween the pair of genes has changed. Therefore, information
gene pairs reflect the changes of the states of the cell, by which
we might be more likely to capture invariant biological charac-
teristics and extract more excellent features for accurate cancer
classification. Based on the above idea, we construct the clas-
sification models based on information gene pairs and extract
features from them. Experimental results on several microarray
data sets have demonstrated that the proposed method performs
well.
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