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Abstract

Gene expression levels are often measured consecutively in time through microarray experiments to detect cellular processes underlying
regulatory effects observed and to assign functionality to genes whose function is yet unknown. Clustering methods allow us to group
genes that show similar time-course expression profiles and that are thus likely to be co-regulated. The correlation coefficient, the most
well-liked similarity measure in the context of gene expression data, is not very reliable in representing the association of two temporal
profile patterns. Moreover, the clustering methods with the correlation coefficient generate the same clustering result even when the time
points are permuted arbitrarily. We propose a new similarity measure for clustering time-course gene expression data. The proposed mea-
sure is based on the correlation coefficient and the two indices representing the concordance of temporal profile patterns and that of the
time points at which maximum and minimum expression levels are measured between two profiles, respectively. We applied the hierar-
chical clustering method with the proposed similarity measure to both synthetic and breast cancer cell line data. We observed favorable
results compared to the correlation coefficient based method. The proposed similarity measure is simple to implement, and it is much more
consistent for clustering than the correlation coefficient based method according to the cross-validation criterion.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Microarrays have been used to simultaneously measure
the gene expression levels of thousands of genes. The pro-
cedure of microarray experiments is based on hybridization
of a specific RNA-sequence to the target cDNA sequences.
The resulting gene expression data allows us to investigate
the presence of a specific tumor or differences between
healthy and diseased tissues. When gene expression levels
are measured through microarray experiments at a limited
number of consecutive time points, we call them time-
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course gene expression profiles. The temporal pattern of
gene expression levels can be investigated by analyzing
time-course data. Gene expression levels in time-course
data are usually measured at a small number of time
points. Conventional methods for time series analysis, such
as not only trend analysis which includes smoothing,
decomposition or regression method, but also ARIMA
modelling or Fourier analysis, are not suitable for such a
short series of time-ordered data. The data is often ana-
lyzed by clustering methods. There have been a number
of clustering methods for time-course data. These can be
divided into two classes depending on whether the data fol-
lows any probabilistic model or not.

Among some results using techniques in the first class
are Hoon et al. (2002), Peddada et al. (2003), Schliep
et al. (2003) and Luan and Li (2003). Hoon et al. (2002)
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fitted linear spline functions to a small set of time-ordered
data in order to estimate the mean temporal profile. Hoon
et al. applied k-means clustering to the fitted linear spline
functions. Peddada et al. (2003) proposed a clustering algo-
rithm based on the order-restricted inference methodology.
Candidate temporal profiles were defined in terms of
inequalities among mean expression levels at the time
points. They selected genes when a bootstrap-based crite-
rion was met and assigned each selected gene to the best fit-
ting candidate profile. Schliep et al. (2003) used hidden
markov models (HMMs) for clustering time-course data.
Given the number of clusters, each was represented by
one HMM from a finite collection of data encompassing
typical qualitative behavior. They found cluster models
iteratively and assigned data points to these models that
maximize the joint likelihood of clustering and models.
Luan and Li (2003) proposed a clustering method based
on the mixed effect model with B-splines which was com-
posed of a term to model the population average gene
expression profile of each cluster and a term to model the
random effect of each gene.

Whereas the previous methods were based on the infer-
ence of sophisticated probabilistic models, there have been
much simpler similarity based methods for clustering genes
with similar temporal profiles. The association measure
such as the correlation coefficient is preferable to mathe-
matical distance based measures such as Euclidean, Maha-
lanobis, or Minkowski distance. This is because the
association measure reflects the tendency of changes for
each pair of corresponding expression levels in the two pro-
files. Chu et al. (1998) pre-identified a few candidate tempo-
ral profiles and estimated the mean expression at each time
point for each profile. Each gene was then assigned to one
of the candidate profiles or not assigned into any depend-
ing upon the magnitude of the correlation coefficient
between the gene’s experimentally determined profile and
each of the candidate profiles. Heyer et al. (1999) employed
a jack-knifed correlation coefficient for clustering genes
from time-course experiments. Balasubramaniyan et al.
(2005) proposed a clustering method for the analysis of
microarray time-course experiments that used a local
shape-based similarity measure based on the Spearman
rank correlation. The method was able to detect similar
and even time-shifted sub-profiles. Even though the corre-
lation coefficient was very simple to calculate and easy to
use, it was not very efficient to detect the characteristics
of temporal patterns. As Peddada et al. (2003) noted, a
large correlation coefficient does not necessarily indicate
two similarly shaped profiles, nor does a small correlation
coefficient necessarily indicate differently shaped profiles.
Moreover, the clustering methods, using the correlation
coefficient as the similarity measure, generated the same
clustering result even when the time points were permuted
arbitrarily.

In this paper we propose a simple similarity measure as
an association index between two time-course profiles. This
measure preserves the concordance of temporal profile pat-
terns and thus can be easily used in any dissimilarity based
clustering method. The proposed measure is a hybrid of the
correlation coefficient and two indices. This method pre-
serves the similarity information of trajectory patterns of
the expression levels on the time interval and that of time
points where maximum and minimum expression levels
are attained, respectively, between two profiles.

We describe the proposed similarity measure for cluster-
ing time-course data in Section 2. In Section 3, we illustrate
that the proposed similarity measure is preferable to the
correlation coefficient with a few synthetic time-course pro-
files. We show that the proposed measure outperforms the
conventional one through a simulation experiment with
noisy data. We also apply the clustering method with our
similarity measure to the real breast cancer cell line data.
We, then, compare the result to that of other methods.
Some concluding remarks are in the last section.

2. New correlation coefficient based similarity measures

As there are dependencies between gene expression lev-
els belonging to subsequent time points, it is important to
consider clustering techniques that reflect the inherent time
dependencies. In most cases of time-course microarray data
analysis (Peddada et al., 2003; Schliep et al., 2003; Luan
and Li, 2003), genes are considered to be in the same cluster
if their trajectory patterns of expression levels are similar,
that is, if they have the same shape of profile (which may
be either monotone increasing, or monotone decreasing,
or up–down, or down–up, or cyclical, etc.), and have the
same time points where maximum and minimum levels
occur.

The gene expression data usually have noises because of
systematic error and/or measurement error. If there are
systematic errors, various normalization methods can
remove systematic effects. When the noises in the expres-
sion profiles are due to random measurement error, we
take replicate measurements at the same time points and
average them to reduce the random error effect. We use
the average expression profiles of replicates for clustering.

Suppose a time-course experiment includes n time points
denoted by t1; t2; . . . ; tn, and there are p genes for clustering.
Let xi;tk be the expression level of gene i at the time points
tk; i ¼ 1; 2; . . . ; p; k ¼ 1; 2; . . . ; n. Then xi ¼ ðxi;t1

; xi;t2
; . . . ; xi;tnÞ

is the profile of gene i. The Pearson correlation coefficient,
between the expression profiles of gene i and gene j, is
defined as

Ri;j ¼
Pn

k¼1ðxi;tk � �xiÞðxj;tk � �xjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1ðxi;tk � �xiÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1ðxj;tk � �xjÞ2

q ;

i; j ¼ 1; 2; . . . ; p; i 6¼ j;

where �xi ¼
Pn

k¼1xi;tk=n, �xj ¼
Pn

k¼1xj;tk=n, and �1 6 Ri;j 6 1.
The Pearson correlation coefficient measures the similarity
of the changes in the expression levels of two profiles. Spe-
cifically it measures the strength of the linear relationship
between two profiles.
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When outliers or measurement errors exist in data, the
Spearman rank correlation coefficient, utilizing the ranks
of the data, is preferred. The Spearman rank correlation
coefficient, between two profiles of gene i and gene j, is
given by

Si;j ¼ 1� 6

nðn2 � 1Þ
Xn

k¼1

frxiðxi;tk Þ � rxjðxj;tk Þg
2
;

where rxiðxi;tk Þ is the rank of xi;tk in the profile
xi ¼ ðxi;t1

; xi;t2
; . . . ; xi;tnÞ, i ¼ 1; 2; . . . ; p. The Spearman cor-

relation coefficient measures the strength of the curvilinear
monotonic relationship between two profiles. That is, it can
measure the monotonic association between the profiles
even when they do not show a linear relationship.

Suppose the sequences x1 ¼ ð2; 3; 6; 4; 7Þ and
x2 ¼ ð1; 2; 3; 5; 3Þ are two expression profiles measured at
five consecutive time points. By permuting the first and
fourth measurements for each profile, we get
y1 ¼ ð4; 3; 6; 2; 7Þ and y2 ¼ ð5; 2; 3; 1; 3Þ. Fig. 1a and b show
the pairs of profiles x1; x2 and y1; y2, respectively. The two
profiles in Fig. 1a display different patterns; in that x1 has
an up–down–up shape, whereas x2 is an up–down profile.
On the other hand, the two profiles in Fig. 1b arguably dis-
play similar patterns. Both change down–up–down–up
over time. The Pearson correlation coefficient for each pair
ðx1; x2Þ and ðy1; y2Þ is equally 0.439. The Spearman correla-
tion coefficient for each pair is 0.667, also the same as each
other. They produce the same measure of association not
only for the profiles with different relationships, but also
for those permuted at different time points arbitrarily.
The values of both correlation coefficients seem to be too
large for the different pair, x1 and x2, and too small for sim-
ilar pair, y1 and y2, as a similarity measure.

The same correlation coefficients, as well, can be
obtained for similar and different pairs of profiles. A large
coefficient does not necessarily indicate two similarly
shaped profiles, nor does a small coefficient necessarily con-
firm differently shaped profiles. Therefore the correlation
coefficient may not be a reliable measure of association
when the experimental time points are few. In order to rem-
edy the shortcomings of the correlation coefficient, we pro-
pose a new association measure by adding a device for
x1
x2

Fig. 1. The pairs of artificial profiles (a) two genes with
keeping track of the profile shape over time to the correla-
tion coefficient.

Let slopeði; tk; tkþ1Þ be the slope of the straight line going
through ðtk; xi;tk Þ and ðtkþ1; xi;tkþ1

Þ of gene i. That is

slopeði; tk; tkþ1Þ ¼
xi;tkþ1

� xi;tk

tkþ1 � tk
:

This measures the rate of expression level change of gene i

from tk to tkþ1. With this slope information, we define the
following function L being used to describe the profile
shape which may be a combination of up, down, and no
change:

Li;tk ;tkþ1
¼

1; slopeði; tk; tkþ1Þ > 0;

�1; slopeði; tk; tkþ1Þ < 0;

0; slopeði; tk; tkþ1Þ ¼ 0:

8><
>:

Now we define a concordance index between the profile
shapes of gene i and gene j as

Ai;j ¼
Xn�1

k¼1

IðLi;tk ;tkþ1
¼ Lj;tk ;tkþ1

Þ=ðn� 1Þ;

where IðDÞ is 1 if D is true, and 0 otherwise. Also, note that
0 6 Ai;j 6 1. Since this index indicates the proportion of
times that the two profiles change in the same direction
over time intervals, we can see how similarly two distinct
profiles behave over time.

Where the profile attains a minimum or a maximum is
another issue with respect to the shape of profiles. Let
T min

i and T max
i be the time points at which the expression

level of the gene i attains a minimum and maximum respec-
tively. Let Mi;j be defined as follows:

Mi;j ¼
1 if T min

i ¼ T min
j and T max

i ¼ T max
j ;

0:5 if either T min
i ¼ T min

j or T max
i ¼ T max

j ;

0 if T min
i 6¼ T min

j and T max
i 6¼ T max

j :

8>><
>>:

Then Mi;j tells whether the minimum and/or maximum
level time points between gene i and gene j are matched
or not.

Since the concordance index Ai;j counts only the number
of time intervals in which there is an agreement in the
sign of the change between two profiles, it may lose the
y1
y2

different profiles (b) two genes with similar profiles.
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Fig. 2. Four synthetic time-course profiles with six time points.
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information of the size of the change. Therefore instead of
simply looking at the sign of the change, we could take into
account its size and compute the correlation coefficient
between the differences of the profiles in the time intervals.
Let d i ¼ ðdi1; di2; . . . ; diðn�1ÞÞ where dik ¼ xi;tkþ1

� xi;tk , then a
new concordance index A�i;j is defined as

A�i;j ¼ ðPearson correlationðd i; d jÞ þ 1Þ=2:

As an alternative index to Mi;j, one may use M�
i;j which uti-

lizes the distances between two profiles’ time points where
the max/min is attained. That is,

M�
i;j ¼ 1�

jT min
i � T min

j j þ jT max
i � T max

j j
2ðn� 1Þ :

Now we consider new association measures between two
time-course profiles, Y R1

i;j ; Y
R2
i;j ; Y

S1
i;j ; Y

S2
i;j being composed of

different component indices as follows:

Y R1
i;j ¼ x1R�i;j þ x2Ai;j þ x3Mi;j;

Y R2
i;j ¼ x1R�i;j þ x2A�i;j þ x3M�

i;j;

Y S1
i;j ¼ x1S�i;j þ x2Ai;j þ x3Mi;j;

Y S2
i;j ¼ x1S�i;j þ x2A�i;j þ x3M�

i;j;

where R�i;j ¼ ðRi;j þ 1Þ=2, and S�i;j ¼ ðSi;j þ 1Þ=2; i; j ¼
1; 2; . . . ; p; i 6¼ j, and xk 2 ½0; 1� is the weighting coefficient
of the kth factor composing new measure withP3

k¼1xk ¼ 1. Note that the value of new measures is be-
tween 0 and 1. The two profiles are very similar in both
shape and time points for the peak and valley if the value
of new measure is close to 1. The profiles are distinct to
each other if the value is close to 0. It will be shown in
the next section that Y R1

i;j and Y S1
i;j are preferable to

Y R2
i;j ; Y

S2
i;j and the conventional correlation coefficients.

Therefore we propose Y R1
i;j and Y S1

i;j as new similarity
measures.

We get 0.555 and 0.805 as the value of Y R1
i;j defined with

the Pearson correlation coefficient for the pairs ðx1; x2Þ and
ðy1; y2Þ in Fig. 1 respectively. The calculated values of Y S1

i;j ,
defined with Spearman correlation coefficient, are 0.583
and 0.833 for the same pairs respectively. The weights, used
in the calculation, are x1 ¼ 1=4, x2 ¼ 1=2, and x3 ¼ 1=4.
A large similarity index (above 0.8) is obtained for similar
profiles in Fig. 1b, whereas a relatively small index (below
0.6) is obtained for different profiles in Fig. 1a. Therefore
the proposed measures can distinguish the pair of profiles
with similar pattern from those with different patterns by
producing a large value for the former.

The performance of the proposed similarity measure
depends on the proper choice of the weights of the three
components, x1;x2;x3. When we cluster microarray pro-
files, the true memberships of the profiles are not known.
Therefore it is impossible to select the optimal weights of
the proposed index producing the best clustering results
for any given clustering algorithm. We can, however, take
an indirect step to select the optimal weights by utilizing
clustering consistency measure. The clustering algorithm
given to group genes based on their time-course profiles
is considered to be consistent if a similar clustering result
is obtained when the data is used with some of them lost.
Datta and Datta (2003) suggested three cross-validation
measures for clustering consistency. We picked the average
proportion of the non-overlap measure among them. For
each k ¼ 1; 2; . . . ; n repeat the clustering algorithm for each
of the n data sets obtained by deleting the observations at
time tk. For each gene, 1 6 i 6 p, let Ci;tk denote the cluster
containing gene i in the clustering based on the data set
with time tk observations deleted. Let Ci;0 be the cluster
in the original data containing gene i. Then the average
proportion of non-overlap measure is

V ¼ 1

pn

Xp

i¼1

Xn

k¼1

1� nðCi;tk \ Ci;0Þ
nðCi;0Þ

� �
;

where nðCÞ is the number of elements in cluster C. This
measure computes the average proportion of genes that
are not put in the same cluster by the clustering method un-
der consideration on the basis of the full data and the data
obtained by deleting the expression levels at one time point
at a time. We expect V to be small for a good clustering
method.

We use the average proportion of non-overlap measure
V to select the optimal values for the weighting coefficients
x1, x2, and x3. That is, we calculate Vs for various choices
of weights satisfying xk 2 ½0; 1� and

P3
k¼1xi ¼ 1. We, then,

pick the values of weights that generate the minimum V.

3. Numerical analysis

3.1. Synthetic data

We first illustrate that the proposed similarity measure is
preferable to the correlation coefficient through a similar
example in Peddada et al. (2003). Fig. 2 shows synthetic
expression levels for four genes at six time points. The cor-
relation coefficients, Ri;j and Si;j, the proposed similarity



Table 1
Similarity indices

ði; jÞ Ri;j Si;j Ai;j Mi;j A�i;j M�i;j New similarity index

Ri;j based Si;j based

Y R1
i;j Y R2

i;j Y S1
i;j Y S2

i;j

(1,2) 0.5920 0.7714 1.0 0.5 0.9786 0.5 0.7730 0.7677 0.8179 0.8125
(1,3) 0.9348 0.8857 1.0 1.0 0.9191 1.0 0.9837 0.9635 0.9714 0.9512
(1,4) 0.8300 0.6000 0.6 0.5 0.7811 0.8 0.7325 0.8528 0.6750 0.7953
(2,3) 0.5651 0.9429 1.0 0.5 0.8524 0.5 0.7663 0.7294 0.8607 0.8238
(2,4) 0.0966 0.0286 0.6 0.0 0.6896 0.3 0.4241 0.5216 0.3929 0.4903
(3,4) 0.8595 0.2571 0.6 0.5 0.9607 0.8 0.7399 0.9050 0.5893 0.7545

Y R1
i;j ¼ 0:5R�i;j þ 0:25Ai;j þ 0:25Mi;j, Y R2

i;j ¼ 0:5R�i;j þ 0:25A�i;j þ 0:25M�i;j.

Y S1
i;j ¼ 0:5S�i;j þ 0:25Ai;j þ 0:25Mi;j, Y S2

i;j ¼ 0:5S�i;j þ 0:25A�i;j þ 0:25M�i;j.
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Fig. 3. Five gene expression profiles with their sample mean profile from
each of three clusters.
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Fig. 4. Sample mean profiles from each of three clusters.
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indices Y R1
i;j ; Y

S1
i;j defined with Ai;j;Mi;j, and Y R2

i;j ; Y
S2
i;j defined

with A�i;j;M
�
i;j between two genes are listed in Table 1. The

weights for the proposed indices are x1 ¼ 1=2 and
x2 ¼ x3 ¼ 1=4. Gene 1 and gene 2 display similar patterns,
in that both have an up–down shape and attain a peak
value at the fourth time point. Their Pearson correlation
coefficient R1;2 is, however, only 0.5920. On the other hand,
gene 3 and gene 4 show apparently different patterns over
time. One gene pattern increases monotonically whereas
the other has a peak at the fourth time point and decreases
after that. They have a high correlation coefficient of
R3;4 ¼ 0:8595, which is much higher than that between gene
1 and 2. Gene 3 and 4 may be grouped together by a cor-
relation-based approach while gene 1 and 2 may not. When
we use the proposed similarity index defined with Ri;j;Ai;j,
and Mi;j to measure the association between two genes,
we get Y R1

1;2 ¼ 0:7730 being slightly higher than
Y R1

3;4 ¼ 0:7399. We applied the complete-linkage hierarchi-
cal clustering method to the data with both the conven-
tional correlation coefficients and the proposed similarity
measures. Given the number of clusters of 2, genes 1, 3, 4
are grouped together excluding gene 2 when the Pearson
correlation coefficient is used as a measure of association.
Gene 2 is excluded because the three lowest correlation
coefficients are R2;4 ¼ 0:0966, R2;3 ¼ 0:5651, and R1;2 ¼
0:5920. On the other hand, when the proposed measure is
used genes 1, 2, 3 are grouped together, with gene 4
excluded, since the three lowest similarity measures are
all with gene 4; Y R1

2;4 ¼ 0:4241, Y R1
1;4 ¼ 0:7325, and Y R1

3;4 ¼
0:7399. When we use either the Spearman correlation coef-
ficient Si;j or the proposed measure Y S1

i;j defined with Si;j;Ai;j

and Mi;j to cluster the data, genes 1, 2 and 3 are determined
to be in the same class excluding gene 4 since the three low-
est indices are all with gene 4 as well.

Even if the clustering results are the same for the meth-
ods using Si;j and Y S1

i;j , the quality of association between
the two profiles may be different. Note that the Spearman
correlation coefficient between gene 2 and 3 is 0.9429. It
is larger than the coefficient 0.8857 between genes 1 and
3. That is, gene 2 is determined to be more similar to gene
3 than gene 1 is similar to gene 3 when the Spearman cor-
relation coefficient is used as a measure of association.
Gene 2, however, attains its minimum at the sixth
time point while genes 1 and 3 do at the first time point.
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Therefore gene 3 is more closely related to gene 1 than to
gene 2. The values of the proposed measure defined with
Si;j, Y S1

1;3 ¼ 0:9714 and Y S1
2;3 ¼ 0:8607 account for the correct

strength of association among genes 1, 2, and 3 since
Y S1

1;3 > Y S1
2;3. It is shown that Y R1

i;j ; Y
S1
i;j ; Y

S2
i;j , and Si;j are useful

for the correct clustering while Ri;j and Y R2
i;j are not. The

three lowest values for M�
i;j are all with gene 2, and Y R2

i;j fails
to cluster the genes correctly. Thus Ri;j-based clustering
methods may classify similar profiles to different clusters
or cluster genes with different profiles. The proposed simi-
larity index is one of the possible improvements of the cor-
Table 2
Agreement comparison of clustering results by the conventional correla-
tion coefficients and the new similarity indices with true classification
based on Rand index

Sample size r Similarity
measure

Rand index p-Value (paired
t-test)Mean Std. dev.

45 0.1 Ri;j 1.000 0.000

Y R1
i;j 0.999 0.007 0.9929

Y R2
i;j 0.834 0.066 1.0000

Si;j 0.780 0.083

Y S1
i;j 0.999 0.007 <10�4

Y S2
i;j 0.852 0.072 <10�4

0.5 Ri;j 0.796 0.084

Y R1
i;j 0.820 0.078 <10�4

Y R2
i;j 0.794 0.064 0.8574

Si;j 0.741 0.118

Y S1
i;j 0.813 0.079 <10�4

Y S2
i;j 0.795 0.071 <10�4

1.0 Ri;j 0.687 0.110

Y R1
i;j 0.709 0.085 <10�4

Y R2
i;j 0.709 0.095 <10�4

Si;j 0.630 0.127

Y S1
i;j 0.701 0.090 <10�4

Y S2
i;j 0.704 0.095 <10�4

90 0.1 Ri;j 1.000 0.002

Y R1
i;j 0.999 0.003 1.0000

Y R2
i;j 0.820 0.048 1.0000

Si;j 0.784 0.067

Y S1
i;j 0.999 0.003 <10�4

Y S2
i;j 0.851 0.061 <10�4

0.5 Ri;j 0.729 0.074

Y R1
i;j 0.780 0.074 <10�4

Y R2
i;j 0.749 0.082 0.8574

Si;j 0.573 0.082

Y S1
i;j 0.770 0.082 <10�4

Y S2
i;j 0.731 0.106 <10�4

1.0 Ri;j 0.628 0.129

Y R1
i;j 0.659 0.089 <10�4

Y R2
i;j 0.644 0.112 0.0003

Si;j 0.566 0.115

Y S1
i;j 0.668 0.077 <10�4

Y S2
i;j 0.642 0.109 <10�4

Y R1
i;j ¼ 0:5R�i;j þ 0:25Ai;j þ 0:25Mi;j, Y R2

i;j ¼ 0:5R�i;j þ 0:25A�i;j þ 0:25M�i;j.

Y S1
i;j ¼ 0:5S�i;j þ 0:25Ai;j þ 0:25Mi;j, Y S2

i;j ¼ 0:5S�i;j þ 0:25A�i;j þ 0:25M�i;j.
relation coefficient as the measure of association for
clustering time-course profiles.

To assess the performance of the proposed similarity
measure in practice, we carried out the analysis on a large
number of data sets with some noises. Suppose the time-
course of a gene in a specific cluster follows the shape of
the mean profile of the cluster, but with additional random
gene-specific location and scale shifts. The actual observa-
tions at discrete time points, however, also contain nor-
mally distributed measurement errors and are assumed to
be measured repeatedly l times. Let lik be the mean profile
of the ith gene’s time-course expression replicates in the kth
cluster, and let K denote the total number of clusters. Now
we model the lth time-course expression measurement of
gene i in cluster k at time point tj considering both mea-
surement error, random gene-specific location, and scale
shifts:

xlijk ¼ likðtj; aik; bikÞ þ �lijk;

where lik is the mean profile of the ith gene; aik and bik ex-
plain the random deviation of lik from the cluster mean
profile in location and scale, respectively. This random
deviation is not due to measurement error, but an inherent,
gene-specific shift from the cluster mean profile. The mea-
surement error �lijk follows Normalð0; r2Þ. We assume there
are K ¼ 3 clusters and the time points are t1 ¼ 1, t2 ¼ 2,
t3 ¼ 3, t4 ¼ 4, t5 ¼ 5. Suppose we have li1ðtjÞ ¼ bi1tj=
ð2pÞ þ ai1, li2ðtjÞ ¼ 2� bi2jtj � 4j=2þ ai2, and li3ðtjÞ ¼ 2þ
bi3jtj � 2j=2þ ai3, then each gene expression profile in
different clusters is generated 5 times ðl ¼ 1; 2; . . . ; 5Þ ran-
domly from the following three functions:

xlij1 ¼ bi1tj=ð2pÞ þ ai1 þ �lij1;

xlij2 ¼ 2� bi2jtj � 4j=2þ ai2 þ �lij2;

xlij3 ¼ 2þ bi3jtj � 2j=2þ ai3 þ �lij3;

where aik � Uniformð�0:5; 0:5Þ, bik � Uniformð1; 2Þ and
�lijk � Normalð0; r2Þ with r ¼ 0:1; 0:5; 1:0, i ¼ 1; 2; . . . ; p,
l ¼ 1; 2; . . . ; 5. The mean profile of the kth cluster is
EðlikÞ. For example, the mean profile of the third cluster
is 2þ ð3=4Þjt � 2j, 1 6 t 6 5. Let �xijk denote the sample
Table 3
The average proportion of non-overlap V for various weights

x1 x2 x3 V

R�i;j S�i;j Ai;j A�i;j Mi;j M�i;j

1 0.3075
1/2 1/4 1/4 0.2232
1/2 1/4 1/4 0.2639
1/3 1/3 1/3 0.2210
1/3 1/3 1/3 0.2719
1/2 1/2 0.1627

1 0.2544
1/2 1/4 1/4 0.1497
1/2 1/4 1/4 0.3199
1/3 1/3 1/3 0.1682
1/3 1/3 1/3 0.2797
1/2 3/10 1/5 0.1248
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mean of gene i in cluster k at time point tj. We use these
gene sample mean profiles �xi�k ¼ ð�xi1k;�xi2k; . . . ;�xi5kÞ as a
data for clustering, i ¼ 1; 2; . . . ; p, k ¼ 1; 2; 3. Fig. 3 shows
five gene expression profiles (thin lines) with their sample
mean profile (thick line) in each cluster, respectively, where
r ¼ 0:5. The pink profiles are from the first cluster; the blue
profiles, from the second cluster; and, the red profiles from
the third cluster.
w1

w
2

0.125

0.157

0.157
0.19

0.19

0.19

0.19

0.222

0.222

0.222

0.222
0.222

0.222

0.222

0.222

0.254

0.254

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5. The contour plot of V for various choices of weights of Y S1
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Fig. 6. The clusters
A 1000 data sets consisting of a total of 45 sample mean
profiles (p ¼ 15 gene sample mean profiles of five replicates
across five time points from each of three clusters, respec-
tively,) were generated. A data set with 45 sample mean
profiles, generated from the model with r ¼ 0:5, is shown
in Fig. 4. We applied the complete-linkage hierarchical
clustering method with the Pearson and Spearman correla-
tion coefficient and the proposed similarity measures
Y R1

i;j ; Y
R2
i;j ; Y

S1
i;j ; Y

S2
i;j ; ðx1 ¼ 1=2;x2 ¼ x3 ¼ 1=4Þ to each of

the 1000 simulated data sets to determine which clustering
result agreed better with the true classification of expres-
sion profiles. We repeated the same experiment for another
1000 data sets consisting of a total of 90 sample mean pro-
files (p ¼ 30 gene sample mean profiles of five replicates
from each of three clusters, respectively).

In order to compare clustering results obtained by differ-
ent measures with the true classification, we use the Rand
index (Rand, 1971) as a measure of agreement. Suppose
that A and B are two different clustering results. Let SS

be the number of pairs of objects that are placed in the
same class in A and in the same cluster in B. Let SD be
the number of pairs of objects in the same class in A but
not in the same cluster in B. Let DS be the number of pairs
of objects in the same cluster in B but not in the same class
in A; and, let DD be the number of pairs of objects in dif-
ferent classes and different clusters in both partitions. The
quantities, SS and DD, can be interpreted as agreements
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and SD and DS as disagreements. Then the Rand index
(RI) is ðSS þ DDÞ=ðSS þ SDþ DS þ DDÞ. The Rand index
lies between 0 and 1. The two clustering results agree per-
fectly if the index is 1. For an illustration of the Rand index
calculation, suppose there are four different gene profiles
x1; x2; x3; x4 Let the clustering result A be A1 [ A2, where
A1 ¼ fx1; x2g and A2 ¼ fx3; x4g, and let another clustering
result B be B1 [ B2 [ B3, where B1 ¼ fx1g, B2 ¼ fx2g, and
B3 ¼ fx3; x4g. SS ¼ 1 because ðx3; x4Þ is the only pair of
gene profiles that are placed in the same class in A and in
the same cluster in B. SD ¼ 1 since ðx1; x2Þ is also the only
pair of gene profiles in the same cluster in A but not in the
same cluster in B. Having no pair of gene profiles in the
same cluster in B but not in the same cluster in A leads
to DS ¼ 0. There are 4 pairs of gene profiles, ðx1; x3Þ,
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Table 4
Rand indices between the result of Peddada et al. (2003) and those of various

Similarity measure Hierarchical clustering

Complete

Ri;j 0.7665
Y R1

i;j ¼ 0:5R�i;j þ 0:25Ai;j þ 0:25Mi;j 0.9755
Y R2

i;j ¼ 0:5R�i;j þ 0:25A�i;j þ 0:25M�i;j 0.8286
Y R1

i;j ¼ 0:5R�i;j þ 0:5Mi;j 0.9020

Si;j 0.9265
Y S1

i;j ¼ 0:5S�i;j þ 0:25Ai;j þ 0:25Mi;j 0.9771
Y S2

i;j ¼ 0:5S�i;j þ 0:25A�i;j þ 0:25M�i;j 0.9298
Y S1

i;j ¼ 0:5S�i;j þ 0:3Ai;j þ 0:2Mi;j 0.9771
ðx1; x4Þ, ðx2; x3Þ, ðx2; x4Þ, in different classes in A and differ-
ent clusters in B, so DD ¼ 4. Therefore the Rand index in
this example is ð1þ 4Þ=ð1þ 1þ 0þ 4Þ ¼ 5=6.

Table 2 contains the agreement comparison of clustering
results by the Pearson/Spearman correlation coefficient
and their modified similarity indices for 1000 data sets of
different sample sizes with r ¼ 0:1; 0:5; 1:0. In each case
the mean and standard deviation of 1000 Rand indices
were obtained. The agreement of the clustering results by
all measures with the true classification got higher as r gets
small. The paired t-test with a significance level of 0.05
showed that the true mean Rand index by each proposed
similarity measure (except for Y R2

i;j ) was significantly higher
than the true mean Rand index by its conventional coun-
terpart Ri;j and Si;j, respectively, for the data with medium
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linkage methods using new similarity indices with different weights

methods

Average Centroid Ward

0.8563 0.8563 0.8057
0.9600 0.9600 0.9053
0.8963 0.8963 0.8286
0.9473 0.9437 0.9053

0.9200 0.9200 0.9543
0.9657 0.9657 0.9249
0.9249 0.9167 0.9020
0.9657 0.9657 0.9771
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ðr ¼ 0:5Þ and large ðr ¼ 1:0Þ measurement error since the
p-value was less than 10�4. There was no difference between
the Rand indices by Ri;j and Y R1

i;j ðY R2
i;j Þ for the data with

small ðr ¼ 0:1Þ measurement error. For the data with
r ¼ 0:1, the Rand index by Si;j is significantly lower than
that by Y S1

i;j and Y S2
i;j . Therefore the proposed similarity mea-

sures outperformed the conventional correlation coefficient
in the more realistic cases where the profiles contained both
gene-specific deviations and significant measurement
errors.
Table 5
Genes classified according to different measures

CloneID Gene name Funct

417226 v-myc viral oncogene homolog Transc
110022 Cyclin D1 Cell cy
428733 Protein kinase C, delta Cellul
362059 Laminin, alpha 3, kalinin, epilegrin Extrac
417503 EST Unkno
248613 v-myb viral oncogene homolog Transc
563187 CDC6 Cell C
321207 Polymerase (DNA directed), epsilon DNA
196676 Replication factor C (activator 1)4 DNA
129140 MAD2L1 Cell cy
248008 Deoxythymidylate kinase Cell cy
489092 Deoxythymidylate kinase Cell cy
285427 CSE1L Cell cy
359119 CDC28 protein kinase 2 Cell cy
415639 Serine/threonine kinase 15 Cell cy
488059 Tubulin, gamma 1 Cell cy
563809 CDC20 Cell cy
293274 Cyclin-dependent kinase inhibitor 3 Cell cy
49950 Flap structure-specific endonuclease 1 DNA
346838 Minichromosome maintenance deficien 3 DNA
359465 Dihydrofolate reductase DNA
487757 Ligase I, DNA, ATP-dependent DNA
49940 Replication factor C (activator 1) 5 DNA
52713 Vitronectin Extrac
339075 Karyopherin alpha 2 Protei
136609 v-myb homolog-like 1 Transc
198205 v-myb homolog-like 2 Transc
229509 Coagulation factor V Misce
200573 EST Unkno
366842 EST Unkno
264117 Cathepsin D Cell cy
150163 Neuropeptide Y receptor Y1 Cellul
238545 ADP-ribosylation factor-like 3 Cellul
242182 Protein kinase inhibitor beta Cellul
509614 High-mobility group protein 1 Transc
510595 Lactate dehydrogenase A Misce
470480 Autocrine motility factor receptor Misce
487407 Insulin induced gene 1 Misce
361381 Myeloid cell leukemia sequence 1 Apopt
145093 Myeloid cell leukemia sequence 1 Apopt
485875 EFEMP 1 Extrac
34821 CHRNA 4 Misce
359191 Protein kinase H11 Cellul
180789 Low density lipoprotein-related protein 1 Protei
162479 E74-like factor 3 Transc
430235 H2B histone family, member Q Transc
545242 STAT 1 Transc
268652 p21/CIP 1 Cell cy
29682 Protein kinase C binding protein 1 Cellul
365147 v-erb-b2 homolog 2 Cellul

(P: Peddada et al., Ri;j: Pearson correlation coefficient, Y S1
i;j : proposed measure
3.2. Application to a breast cancer cell line data

Lobenhofer et al. (2002) treated the MCF-7 breast can-
cer cell line with 17b-estradiol or ethanol, and got samples
at 1, 4, 12, 24, 36 and 48 h after treatment. At each time
point, eight hybridizations were performed. Peddada
et al. (2003) used the estimated profiles that were obtained
using each gene’s eight replications using the method of
Hwang and Peddada (1994). They identified the most bio-
logically meaningful 50 genes and grouped them into nine
ional category P Ri;j Y S1
i;j

ription/chromatin structure 1 4 8
cle 2 6 8

ar signaling 2 5 8
ellular matrix/cell structure 2 7 7
wn 2 7 7
ription/chromatin structure 2 7 7
ycle 3 3 9
replication/repair 3 8 9
replication/repair 3 3 9
cle 4 3 4
cle 4 3 4
cle 4 3 4
cle 4 3 4
cle 4 3 4
cle 4 1 4
cle 4 3 4
cle 4 3 4
cle 4 1 4
replication/repair 4 3 4
replication/repair 4 3 4
replication/repair 4 1 4
replication/repair 4 8 4
replication/repair 4 8 4
ellular matrix/cell structure 4 1 4
n degradation/synthesis/targeting 4 1 4
ription/chromatin structure 4 3 4
ription/chromatin structure 4 8 4

llaneous 4 1 4
wn 4 3 4
wn 4 1 4
cle 5 2 5

ar signaling 5 3 5
ar signaling 5 3 5
ar signaling 5 3 5
ription/chromatin structure 5 1 5

llaneous 5 2 5
llaneous 5 2 5
llaneous 6 1 5
osis 7 4 1
osis 7 4 1
ellular matrix/cell structure 7 4 1

llaneous 7 4 1
ar signaling 8 9 6
n degradation/synthesis/targeting 8 5 2
ription/chromatin structure 8 4 2
ription/chromatin structure 8 4 2
ription/chromatin structure 8 4 1
cle 8 4 2

ar signaling 9 4 3
ar signaling 9 4 3

).
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clusters. We used the sample mean of eight replicated
profiles as each gene’s time-course profile. We clustered
these 50 genes’ time-course profiles by the complete-linkage
hierarchical clustering method with the conventional corre-
lation coefficient (Pearson, Spearman) and the new similar-
ity measures Y R1

i;j ; Y
R2
i;j ; Y

S1
i;j ; Y

S2
i;j , respectively, and compared

their results. Since the proper number of classes for this
data was 9 (Peddada et al., 2003), we clustered the profiles
into nine groups.

We used the average proportion of non-overlap measure
V for clustering consistency. The values of V for
Y R1

i;j ; Y
R2
i;j ; Y

S1
i;j ; Y

S2
i;j with various choices of x1;x2 and x3

are shown in Table 3. When the number of classes is 9,
we obtained V ¼ 0:1627 for the method with Y R1

i;j where
x1 ¼ 1=2;x2 ¼ 0 and x3 ¼ 1=2; and V ¼ 0:3075 for the
method with Ri;j. The value of V for Y S1

i;j where
x1 ¼ 1=2;x2 ¼ 3=10 and x3 ¼ 1=5 was 0.1248 while that
for Si;j was 0.2544. The new similarity indices (except for
Y S2

i;j ) produced more consistent clustering results than the
conventional correlation coefficients (Ri;j; Si;j) did.

The optimal values for the weighting coefficients x1;x2

and x3 were selected by V. We calculated Vs for various
choices of weights satisfying xk 2 ½0; 1� and

P3
k¼1xk ¼ 1;

each xk increases from 0 to 1 by 0.05 increment. We picked
the values of weights that generated the minimum V. Y R1

i;j

with x1 ¼ 1=2;x2 ¼ 0;x3 ¼ 1=2 produced the minimum
V ¼ 0:1627 among all Y R1

i;j s and Y R2
i;j s which are based on

Ri;j. Y S1
i;j with x1 ¼ 1=2;x2 ¼ 3=10;x3 ¼ 1=5 produced the

minimum V ¼ 0:1248 among all Y S1
i;j s and Y S2

i;j s which are
based on Si;j, and this is the minimum among all
Y R1

i;j ; Y
R2
i;j ; Y

S1
i;j ; Y

S2
i;j with possible weights. Fig. 5 is the con-

tour plot of the values of V for various choices of weights
of Y S1

i;j . Therefore Y S1
i;j with x1 ¼ 1=2;x2 ¼ 3=10;x3 ¼ 1=5

is more consistent for clustering than any other proposed
indices including the conventional correlation coefficients
ðRi;j; Si;jÞ according to the cross-validation criterion.

The clusters classified by Ri;j are shown in Fig. 6, and the
clusters classified by Y S1

i;j with x1 ¼ 1=2;x2 ¼ 3=10 and
x3 ¼ 1=5 are shown in Fig. 7. The highest profile in cluster
4 of Fig. 6 was classified into cluster 7 of Fig. 7. The rest of
the profiles grouped in cluster 4 of Fig. 6, which were deter-
mined by Ri;j, were divided into the first three clusters
determined by Y S1

i;j (clusters 1–3 in Fig. 7). The profiles in
cluster 1 of Fig. 7 increased from their minimum level time
point 24 to the time point 48 whereas those in cluster 2 of
Fig. 7 decreased from time point 24 to their minimum level
time point 36. Two profiles in cluster 3 shown on Fig. 7
decreased on the final interval while clusters 1 and 2 had
their profiles increasing in the same interval. Therefore
the Ri;j-based method could not distinguish three different
groups and combine them into one cluster.

For the comparison of clustering results obtained by
these two methods with that of Peddada et al. (2003),
one of the biologically significant analysis results for this
particular data, we used the Rand index again. The Rand
indices between the result of the order-restricted infer-
ence-based clustering method in Peddada et al. (2003)
and those of various hierarchical linkage clustering meth-
ods using the new indices with different weights are shown
in Table 4. The clustering results from the method using the
new similarity measures (except for Y S2

i;j ) agreed better with
that of Peddada et al. (2003) on the partitions of profiles
than the result from the one using the conventional corre-
lation coefficient did. The Rand indices between the result
of Peddada et al. (2003) and those of complete-linkage hier-
archical clustering method using Y S1

i;j with the optimal
weights and Ri;j were 0.9771 and 0.7665, respectively. The
clustering results according to the method of Peddada
et al. (2003), Ri;j and Y S1

i;j ¼ 0:5S�i;j þ 0:3Ai;j þ 0:2Mi;j are
shown in Table 5 along with support for the proposed
measure Y S1

i;j ’s better agreement with the result of Peddada
et al. (2003).

4. Conclusions

Two time-course gene expression profiles are considered
to be in the same group if they have similar shape and the
max/min expression levels are measured at similar time
points. The correlation coefficient is a measure of associa-
tion commonly used in a distance based method for cluster-
ing profiles. As far as the two temporal profiles have similar
expression levels at most of the time points, even though
they have different directions for the slopes, the correlation
coefficient could be high and the profiles might be put into
the same class.

We considered four similarity measures Y R1
i;j ; Y

R2
i;j ; Y

S1
i;j ; Y

S2
i;j

that can preserve the information of the profile pattern to
make up for the weakness of the correlation coefficient as
a measure of association for clustering. They are based
on either Pearson or Spearman correlation coefficient and
the two indices representing the concordance of temporal
profile patterns (shapes) and that of the time points at
which maximum and minimum expression levels (extreme
time points) are measured between two profiles respec-
tively. We considered two types of profile shape concor-
dance indices, Ai;j and A�i;j. Ai;j counts the number of time
intervals in which there is an agreement in the sign of the
change in each time interval between two profiles, and
A�i;j is the correlation coefficient between the changes of
each profile in the time intervals. We also considered two
types of concordance indices, Mi;j and M�

i;j for the extreme
time points. Mi;j is an all-or-nothing measure which checks
whether the maximum and minimum time points of two
profiles are matched or not. M�

i;j on the other hand utilizes
the actual distance between two profiles’ time points where
the max/min is attained.

The applications of the hierarchical clustering method to
both synthetic noisy data and the real breast cancer cell line
data showed that the proposed similarity measures, Y R1

i;j

and Y S1
i;j are preferable to the conventional correlation coef-

ficients. Applied to the small synthetic experiment and the
real data in this research, Y R1

i;j and Y S1
i;j are better than Y R2

i;j

and Y S2
i;j in clustering consistency, respectively. Especially

Y S1
i;j outperforms the others including the conventional
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correlation coefficients. The quantitative measures, A�i;j and
M�

i;j do not help much to improve the clustering ability
when compared with their qualitative counterparts Ai;j

and Mi;j, respectively. As Ai;j and Mi;j are qualitative mea-
sures, it seems to be more reasonable to construct a new
association measure (Y S1

i;j ) by combining them with the
qualitative correlation coefficient (Si;j) rather than the
quantitative correlation coefficient (Ri;j).

Y S1
i;j was simple to implement, yet obtained very similar

clustering result to that of the sophisticated statistical infer-
ence-based method (Peddada et al., 2003) for the breast
cancer cell line data. Moreover it is much more consistent
for clustering than the correlation coefficient according to
the cross-validation criterion.
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