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Abstract

In this paper, we propose a robust adaptive region segmentation algorithm for noisy images, within a Bayesian

framework. A multiresolution implementation of the algorithm is performed using a wavelets basis and can be used to

process both 2D and 3D data. In this work we focus on the adaptive character of the algorithm and we discuss how

global and local statistics can be utilised in the segmentation process. We propose an improvement on the adaptivity by

introducing an enhancement to control the adaptive properties of the segmentation process. This takes the form of a

weighting function accounting for both local and global statistics, and is introduced in the minimisation. A new for-

mulation of the segmentation problem allows us to control the effective contribution of each statistical component. The

segmentation algorithm is demonstrated on synthetic data, 2D breast ultrasound data and on echocardiographic se-

quences ð2Dþ TÞ. An evaluation of the performance of the proposed algorithm is also presented.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The first step toward automatic analysis or

evaluation of a given image is generally considered

to be successful segmentation. In recent years,

many authors have applied Bayesian estimation

techniques for image segmentation. These statis-

tical approaches have improved the segmentation

results of different image modalities (natural scenes
(Pappas, 1992; Unser, 1995), texture images

(Bouman and Liu, 1991; Kervrann and Heitz,

1994), ultrasonic images (Ashton and Parker,

1995; Boukerroui et al., 1998; Xiao et al., 2000)).

The segmentation results usually depend heavily

on the estimation of the model region parameters

that can be based on local/global statistics and can

be adaptive.
Ultrasound images are of relatively poor quality

and segmentation is a difficult problem (Ashton

and Parker, 1995). The image degradation includes

primarily speckle noise, which can be modelled as
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a multiplicative degradation field (Hughes and

Duck, 1997), the blurring of spatial information

perpendicular to the propagation direction of ul-

trasonic waves and the non-linear attenuation of

ultrasound. When specular structures are imaged,

the detected echo amplitude varies according to
the orientation of the reflecting structure and

therefore the contours can appear discontinuous.

Moreover, despite the use of dynamic focusing

techniques, the lateral resolution is poor and the

structures are often blurred in a direction per-

pendicular to ultrasonic propagation. Therefore,

segmentation algorithms based only on global in-

formation (such as thresholding techniques, global
clustering approaches and intensity-dependant

edge detection) are not suitable and give poor re-

sults. This emphasises a need to develop segmen-

tation (or feature detection) techniques that can

avoid the intensity inhomogeneity problem or

approaches which take into account the non-uni-

formity of tissue classes. To our knowledge three

kinds of solution are proposed in the literature:

• Mulet-Parada and Noble (1998, 2000) suggest a
phased-based feature detection method. The

most important advantage of this technique is

its intensity-independence. However, as the noise

rejection in this method involves an intensity-

based noise threshold the method is not truly in-

tensity invariant and is highly susceptible to
noise. Applied to echocardiographic image se-

quences, the 2Dþ T version of the published

technique takes advantage of temporal conti-

nuity in order to improve its robustness to noise

and detect only relevant and continuous features

over time.

• Recently, Xiao et al. (2000) proposed a statisti-
cal model that exploits knowledge of tissues
properties and intensity inhomogeneities in ultra-

sound for simultaneous contrast enhancement

and segmentation. The underlying model was

proposed by Wells et al. (1996) for bias field cor-

rection and segmentation of magnetic resonance

(MR) images. Results shown for breast and car-

diac ultrasound images demonstrate that it can

successfully remove intensity inhomogeneities
and significant improvement is achieved in tissue

contrast and the resulting image segmentation.

Although, this is a promising result, it still re-

quires user interaction to set the image model

parameters.

• Recently, following the publication of the adap-
tive clustering K-means algorithm (Pappas,
1992), several adaptive approaches have been

proposed for ultrasound images. Indeed, the

adaptive property of the Pappas algorithm is

useful because it considers local class mean with

a slowly spatial variation, compensating for

the non-uniformity of ultrasound echo sig-

nals within the same tissue region. Therefore,

intensity-based (Ashton and Parker, 1995) and
texture-based (Boukerroui et al., 1998, 2001)

adaptive Bayesian segmentation approaches

taking into account, intrinsically, the non-uni-

form nature of the tissue classes, have yielded

promising results.

In previous work (Boukerroui et al., 1998), we

have presented an adaptive segmentation algo-
rithm based on texture characterisation in a

Bayesian framework. The underlying model was

originally proposed by Ashton and Parker (1995).

In the current work we focus on the adaptive

character of the algorithm and we discuss how

global and local statistics can be utilised during the

segmentation process. In other words, the paper

proposes an improvement of the adaptivity by
introducing a function to control the adaptive

properties of the segmentation process. Aweighting

function, taking into account both local and global

statistics is used during the segmentation process.

This new formulation of the segmentation prob-

lem allows us to control the effective contribution

of each statistic.

The paper is organised as follows. After a de-
scription of the mathematical framework of our

previous work, the proposed improvement on the

adaptive character of the algorithm is presented in

Section 2. A brief description of the algorithm and

implementation details are given in Section 3.

Section 4 presents segmentation results on syn-

thetic data, 2D ultrasound breast images and

echocardiographic images ð2Dþ TÞ. In the case of
echocardiographic data a comparison of the

computer-generated boundaries of the left ventri-

cle with the hand-outlined contours drawn by a
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medical expert is presented. Results obtained with

Xiao et al. (2000) segmentation method are also

presented for comparison. The paper’s conclusions

are summarised in Section 5.

2. Segmentation method

In this section we briefly outline the adaptive

texture-based clustering algorithm. The reader

may refer to (Boukerroui et al., 1998, 2001; Ash-

ton and Parker, 1995) for further details.

We assume that the observed data Y is a ran-

dom field defined on a 2D (or 3D) isotropic rect-
angular grid S. Ys denotes the value of Y at the site
s 2 S. A segmentation of the image (volume) into
regions will be denoted by X, where Xs ¼ i means
that the pixel (voxel) at S belongs to region i. The
probability P ðX ¼ xÞ is written as P ðxÞ. The
number of different regions in X is k. The condi-

tional density function of Y given X is assumed to

exist and to be strictly positive and is denoted by
P ðyjxÞ. The image may be segmented by estimat-
ing the pixel classification X given the observed

image Y using the maximum a posteriori criteria.

We use a Markov random field (MRF) to model

the region process X, due to its restriction to local

interaction. With this assumption, according

to Hammersley–Clifford theorem (Besag, 1974),

and for a given neighbourhood system, the prior
density PðxÞ can be written as a Gibbs density
where

ln P ðxÞ ffi
X
c2C

VcðxÞ ¼
X
hs;ti

bhs;tið1
 2dðxs; xtÞÞ: ð1Þ

Here, VcðxÞ are the clique potentials and d is the
Kronecker delta function.

We use an 8-connected (6-connected) spatial

neighbourhood for 2D (3D) lattice. bhs;ti ¼ b if the
clique hs; ti is horizontal or vertical and bhs;ti ¼ b=ffiffiffi
2

p
if it’s right or left diagonal. b is a positive

parameter, so that two neighbouring pixels are

more likely to belong to the same class than to

different classes.

The conditional density distribution Psðysjxs ¼ iÞ
of the observed grey level intensity at a site s is

assumed to be Gaussian, with mean li
s and vari-

ance ðri
sÞ
2
. The local class mean li

s is a slowly

varying function of s. These assumptions lead to

the following posterior energy function:

UðxjyÞ ¼
X
s

lnðrxs
s Þ

8<
: þ ys 
 lxs

sffiffiffi
2

p
rxs
s

 !29=
;þ

X
hs;ti

Vhs;tiðxÞ:

ð2Þ

This function has two components. The first term
constrains the region intensity to be close to the

data and the second is a regularisation term, which

imposes a smoothness constraint. To improve the

robustness of the algorithm, in our earlier work

(Boukerroui et al., 1998) we have modified the

energy function (2) by adding other constraints

based on parametric measurements that are rep-

resentative of each region.

Let fY1; . . . ; Ypg be a set of features calculated
on each site of the data. Grey-scale parametric

images (volumes) are modelled in the same way as

grey scale intensity images in (Pappas, 1992).

Using the same notations, the complete energy

function takes the following form:

Uðxjy; y1; . . . ; ypÞ ¼
X
s

lnðrxs
s Þ

8<
: þ ys 
 lxs

sffiffiffi
2

p
rxs
s

 !29=
;

þ ðpþ 1Þ
X
hs;ti

Vhs;tiðxÞ

þ
Xp
j¼1

X
s

lnðrxs
j Þ

8<
:

þ ðyjÞs 
 ðmjÞxssffiffiffi
2

p
rxs
j

 !29=
;: ð3Þ

Computation of the exact minima of energy

functions ((2) and (3)) is time consuming. As an

alternative to simulated annealing (Kirkpatrick
et al., 1983), the Iterated Conditional Mode algo-

rithm (Besag, 1986) has been used which does not

guarantee a global minimum of the energy func-

tion, but is a fast deterministic algorithm.

2.1. Limitations and discussion

A major difficulty with version of the algorithm
described in (Pappas, 1992; Ashton and Parker,
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1995; Boukerroui et al., 1998), is that it takes into

account the global statistics of the regions only in

the first few iterations. Indeed, when the algorithm

starts from a bad initialisation or when the sta-

tistics of regions are not Gaussian the adaptive

properties decrease the robustness of the algorithm
and prevent it from converging to the optimal

solution.

Unser (1995) proposed a different and interest-

ing adaptive extension of the K-means clustering

algorithm. The essential difference between this

algorithm and Pappas (1992) approach is that

Unser utilises a membrane model to specify the

smoothness of the means over regions rather than
a sliding windows approach. Additionally this

technique does not include the MRF regularisa-

tion term. The use of a membrane spline regular-

iser to control the spatial smoothness of the means

is an interesting idea as sharp changes of the mean

are not expected within the same region. However,

the smoothness is controlled by one global pa-

rameter for all the regions of the data. Moreover,
such a regularisation model (based on a priori

information) does not take into account the ob-

served data. Indeed, in the special case of ultra-

sonic images, the spatial variation of the local

means depends on their absolute value because of

the multiplicative nature of the degradation.

In the next section, we present a new formula-

tion to control the adaptive properties of the seg-
mentation process which takes into account the

observed data. In order to illustrate clearly

the enhancement made, the new formulation of the

segmentation problem is presented only for grey

level data.

2.2. The proposed energy function

We propose, in this paper, to introduce a

weighting function into the energy function to take

into account the global statistics of the image. The

energy function becomes:

UðxjyÞ ¼
X
s

uðW xs
s Þ

Nu
s

lnðrxs
s Þ

8<
: þ ys 
 lxs

sffiffiffi
2

p
rxs
s

 !29=
;

þ
X
hs;ti

Vhs;tiðxÞ; ð4Þ

where W xs
s is a weighting coefficient which mea-

sures the similarity between the local statistics of

the region xs and the global statistics. u is a

transformation function and Nu
s is a normalisation

constant of the function u at the site s defined by
the following condition:X
xs

uðW xs
s Þ ¼ ~kk: ð5Þ

Here, ~kk is the number of regions in the analysing
window centred at the site s.

In the case of a segmentation problem, the

similarity measure that is largely used to compare

two distributions is the Kolmogorov–Smirnov

distance (Geman, 1990; Muzzolini et al., 1993;

Kervrann and Heitz, 1994). So we define W xs
s ¼

DðyðxsÞ; yðs; xsÞÞ; where D is the Kolmogorov–

Smirnov distance between the cumulative distri-
bution functions of the whole sites of the class xs
and the sites of the same class in the analysed

window W centred at s. The introduction of the

transformation function u aims to control the

adaptive term As and the weighting one W xs
s . We

define u as

uðW xs
s Þ ¼ As þ ðW xs

s Þb ð6Þ

and

As ¼ a max
all class

½ðW xs
s Þb�

�

 min
all class

½ðW xs
s Þb�

�
8s 2 S;

ð7Þ
where a and b are positive constants.

Thus, at each site s, the constant a controls the

contribution of the adaptive term As (local statis-

tics) and the weight W xs
s which, takes into account

the global statistics. The influence of the control
parameters a and b on the u function is illustrated
in Fig. 1 (For example for a � 1, Eq. (4) is

equivalent to Eq. (2); see Appendix A). Thus, for

large values of the parameter a, the weighting

function considers mainly the local statistics, and

the adaptive character of the algorithm is em-

phasised. Conversely, for small values of a (�1),
the contribution of the local statistics to the la-
belling decision is relatively low in comparison to

the global one, leading to the decreasing of the

adaptive property of the algorithm. We use b ¼ 1
in the following.
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3. Algorithm

In Section 2, the conditional density distri-

bution of the observed grey level intensity at a site

s is assumed to be Gaussian. Clearly this assump-

tion is not true in many cases, especially for dis-

played ultrasound data. As in (Ashton and Parker,
1995) we make use of the Central Limit Theorem

which states that the distribution of the mean of a

large number of independent random observations

tends toward a Gaussian distribution centred on

the collective mean. This assumption is reasonably

acceptable for low-pass filtered and decimated

images that are originally governed by non-

Gaussian statistics and leads to a multiresolution
implementation of our algorithm (Boukerroui

et al., 1998).

Starting from the highest resolution image, a

multiresolution discrete wavelet transform (DWT)

pyramid is built. The coarsest resolution is initially

segmented and the result of the segmentation is

passed on to the next finer level of resolution and

so on, until the finest resolution image is seg-
mented. An initial solution of the minimisation

problem, at the coarsest resolution, is obtained

with the K-means clustering algorithm. Starting

from this segmentation, the algorithm alternates

between the estimation of region labels and model

parameters and is stopped when no further chan-

ges in the labels occur.

A major difficulty with the multiresolution
structure is the adhoc choice of the Gibbsian para-

meter b at each resolution level. The problem of its
estimation is studied in (Vemuri et al., 1995) in the

special case of the segmentation of brain MR im-

ages. The authors propose a prior model for the

estimation problem. Some studies (Bouman and

Liu, 1991; Pappas, 1992) propose a constant value
for parameter b whereas Ashton and Parker (1995)
suggest adapting its value to each resolution (b
increases linearly with resolution). In (Heitz et al.,

1994), the authors propose to derive the Gibbsian

parameter at each scale, directly from the full

resolution scale. This method shows clearly that

the Gibbsian parameter has a small value at the

coarsest resolution and increases, but not linearly.
In this paper, the Gibbsian parameter at each scale

is derived from the full resolution scale (b0) ac-
cording to the multiscale approach proposed in

(Heitz et al., 1994). The number of regions k and

the Gibbsian parameter at the full resolution b0

are not estimated.

4. Results

4.1. Synthetic data

The first two experiments were carried out on

synthetic data. Synthesised images provide a con-

trolled environment, which allows quantification

of the performance of the algorithm because a
reference image is available. The aim of these ex-

periments was to evaluate the improvement of the

segmentation when the global statistics were taken

into account in an adaptive algorithm. Two

128� 128 synthetic images (Fig. 2) were used in
the experiments. The image in Fig. 2(a) contains

four distinct white Gaussian textures with close

means and variances (1: l ¼ 180, r ¼ 25; 2:
l ¼ 120, r ¼ 30; 3: l ¼ 150, r ¼ 30; 4: l ¼ 150,
r ¼ 20). In Fig. 2(b), the intensities in the image in
Fig. 2(a) has undergone a vertical linear attenua-

tion. This is achieved by multiplying the original

intensity values by a multiplicative coefficient

which is constant horizontally and decreases lin-

early in the vertical direction.

Fig. 3 shows the segmentation results for the
two synthetic images and for three different values

of the control parameter a. For both images, poor

Fig. 1. The influence of the control parameters a and b. D is the

Kolmogorov–Smirnov distance.
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segmentation results are obtained if the weighting

function considers mainly the local statistics (large
value of a). One can observe that the segmentation

results of image (a) for a ¼ 1 and a ¼ 0:1 appear in
good agreement whereas there is a difference of

regions labelling for the segmentation of the image

(b). This is because the different regions are homo-

geneous in image (a). This is not the case in image

(b) because of the vertical attenuation. The seg-

mentation result of the image (b) for a ¼ 0:1 is
interesting. Knowing that the degradation field

varies vertically, the resulting mean of the upper

part (top right) and the lower part (bottom left) of
the same region will be slightly different. When the

weighting function considers mainly the global

statistics (a ¼ 0:1) the algorithm classified the up-

per part and the lower part of this class into two

different classes because of the non-homogeneity

of the regions whereas it labelled the ring and the

right bottom square to the same class. Note that

the ring region and the right bottom square have
the same mean. An examination of the segmenta-

Fig. 2. Synthetic original images; four white Gaussian textures (a); image (a) with a vertical linear attenuation (1–0.9 from top to

bottom) (b); means and standard deviations of the homogeneous regions (c).

Fig. 3. Segmentation results for k ¼ 4, b0 ¼ 0:3 and for different values of the control parameter a: image 2(a) (a); image 2(b) (b).
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tion results indicates that a ¼ 1 gives a good trade-
off between global and local statistics.

The evolution of the segmentation map of the

image in (Fig. 2(b)) from coarse to fine resolution

with an overestimated number of classes (k ¼ 5)
is shown in Fig. 4. When the distribution is not
homogeneous within the regions (case of Fig. 2(b)),

the assumption of a Gaussian distribution for the

grey levels is not valid. The initial segmentation

provided by the K-means algorithm (Fig. 4(a)) is

far from an optimal solution. If we chose to em-

phasise the adaptive character of the algorithm

(a ¼ þ1), false regions are preserved and the

algorithm does not converge toward a satisfying
segmentation (Fig. 4(e)). Note how close the result

(e) is to the initial solution (a). If instead we chose

to take global statistics into account in the

weighting function, this leads to less false regions

and to a segmentation closer to the optimal solu-

tion (Fig. 4(d)). The intermediate results (b) and

(c), illustrate the behaviour of the algorithm

and the evolution of the segmentation with reso-

lution. The improvement achieved by taking into

account the global statistics in the segmentation

process is seen by comparing results (d) and (e).

However the computation complexity increases

with the introduction of the weighting term. For
example the processing times on a Pentium 400

MHz for the result (e), obtained with Ashton and

Parker (1995) method is 4 and 16 s for the results

(d) obtained with the new method.

4.2. Cardiac 2Dþ T data

In the third experiment, the application of our
new algorithm on a long-axis echocardiographic

sequence of 106 images ð2Dþ TÞ is carried out. In
the segmentation process the sequence is consid-

ered as a 3D volume to enable temporal continuity

to be used in the segmentation process. Results

obtained with Xiao et al. (2000) segmenta-

tion method are also presented for comparison

Fig. 4. Evolution of the segmentation map of the original image Fig. 2(b) from coarse to fine resolution for k ¼ 5, a ¼ b ¼ 1 and
b0 ¼ 0:3: initial solution (a); results at the end of resolution 2 (b); at the end of resolution 1 (c); final result (resolution 0) (d). The
segmentation result (e) was obtained using the same parameters but for a ¼ þ1 (i.e. using the energy function in Eq. (2)).
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(Fig. 5D). Xiao’s approach is semiautomatic, as it

requires user interaction to set the image model

parameters. The results presented in this paper

were obtained after a moderate number of exper-

iments (3–5) to set the image parameters. The Xiao

algorithm was run with two classes; the means/
standard deviations were set to 35/10 for the cavity

region and 100/40 for the background. The pro-

posed segmentation technique was run with three

classes, b0 ¼ 1 at the full resolution and for three
levels of decomposition of the DWT.

Fig. 5 shows the segmentation results (super-

imposed on the original data) for four frames (1–4)

and for three different values of the control pa-

rameter a (A, B, C). Images A were obtained for

a ¼ þ1 i.e. using the energy function in (2). B and

C were obtained with a ¼ 10 and a ¼ 1 respec-
tively. A deviation with respect to the true bound-

aries is observed in the left part of the images (right

ventricle) when the adaptive character is emphas-

ised (Fig. 5A), whereas a good detection was ob-

tained when global statistics are included in the

Fig. 5. Segmentation results for three different values of the control parameter a: a ¼ þ1 (A), a ¼ 10 (B) and a ¼ 1 (C). Segmentation
results of Xiao et al. (2000) (D). Frames 1 and 2: systole, frames 3 and 4: diastole.
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segmentation process (Fig. 5C). As expected, the

segmentation is better when both global and local

statistics were included in the segmentation pro-

cess. Our formulation of the problem allows us to

control the effective contribution of each set of

statistics by varying the parameter a. There is little
difference between results A and B, probably be-

cause in experiment B the global statistics are in-

volved with a low weight (10% of the weight of

local statistics). This provides some insight into the

importance of the parameter a.

An evaluation of the computer detection of the

boundary of the left ventricle has been made. First

we computed two classical measures (perimeter
and area) on the 106 frames of the computer-

generated and the hand-outlined boundaries. The

results are summarized in Table 1. In particular,

we can see that the perimeter results show us that

little improvement is achieved when global sta-

tistics are involved and that Xiao’s algorithm has

the smallest perimeter error. However it is quite

difficult to make a conclusion using only these two
measures. Indeed, the perimeter error is highly

related to the smoothness of the contours then to

its localisation. Xiao’s segmentation is smoother

then the three results obtained with the proposed

method. Moreover the area errors do not show

any significant difference between the four algo-

rithms.

Recently, a more applicable methodology for

evaluation of boundary detection algorithm has

been proposed (Chalana and Kim, 1997). This

methodology uses essentially two distance mea-
sures: The Hausdorff distance (HD) and the av-

erage distance (AD). The HD between two curves

is defined as the maximum of the distance to the

closest point’s (DCP) between the two curves. The

DCP associates each point on both curves to a

point on the other curve, and the HD finds the

largest distance between the associated points.

The AD is the average of all distances between the
corresponding points between the curves. This ef-

fectively allows us to analyse the regional differ-

ences between the curves.

Table 2 shows the minimum, the maximum, the

mean and the standard deviation of the two dis-

tances over all data sets (106 frames). Note that

the HD does not show any significant difference

between the performance of the three algorithms
A, B and C. However the AD shows clearly that

the third algorithm is better than the two others

(p < 0:0001 for the Friedman’s rank test). Re-
garding the comparison between the proposed

technique (results C) and Xiao’s algorithm (results

Table 1

Perimeter and area error measures of the computer-generated segmentation of the left ventricle relative to measurement made by hand

by a medical experta

a ¼ þ1 a ¼ 10 a ¼ 1 Xiao et al. (2000)

Perimeter, % (pixel size) l ¼ 
28:83 l ¼ 
25:38 l ¼ 
19:52 l ¼ 
8:85
r ¼ 8:22 r ¼ 7:17 r ¼ 4:99 r ¼ 6:24

Area, % (pixel size)2 l ¼ 
6:29 l ¼ 
6:03 l ¼ 
7:59 l ¼ 
6:41
r ¼ 6:91 r ¼ 6:92 r ¼ 6:71 r ¼ 8:06

a The minus sign indicates that the estimation is larger than the medical expert’s.

Table 2

Direct comparison of the computer-generated boundaries of the left ventricle to the hand-outlined by a medical expert (results in pixel)

a ¼ þ1 a ¼ 10 a ¼ 1 Xiao et al. (2000)

HD ðmin;maxÞ 8.06, 23.53 8.06, 23.53 8.48, 22.56 8.06, 25.50

ðl;rÞ 14.21, 3.91 13.63, 3.74 13.64, 3.48 16.35, 4.49

AD ðmin;maxÞ 2.49, 17.13 2.45, 15.80 1.82, 11.75 2.64, 12.40

ðl;rÞ 8.78, 3.09 8.19, 2.94 5.96, 2.20 5.67, 2.07
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D), the HD distance shows a significant difference

(p < 0:001), however the AD measure shows that

the performance of the two algorithms are similar

(p > 0:7). In other words, the average segmen-
tation error of the left ventricle of the two tech-
niques in comparison to the manual contours is

relatively the same.

4.3. Breast data

Finally, we applied the new weighting function

to the multiparametric model, and an example of

segmenting breast ultrasound images is shown in

Fig. 6. In this experiment we made use of the co-

occurrence matrix method 1 to calculate three

textural parameters. In our previous work (Bou-

kerroui et al., 1998), we have shown that a more
robust lesion detection can be obtained when the

textural features characterising pathological tis-

sues are involved in the segmentation process. The

Fig. 6. Breast lesion segmentation with k ¼ 2 for different resolution level values (n) of the DWT. All the results were obtained using
three textural features calculated on the co-occurrence matrix (angular second moment, correlation and sum average). Results obtained

with: a ¼ þ1 (i.e. energy function in (3)) (a); a ¼ b ¼ 1 (b).

1 The reader may find more details about the co-occurrence

matrix method in (Haralick et al., 1973) and on the contribu-

tion of the textural features in (Boukerroui et al., 1998).
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three textural parameters used in this experiment

were: angular second moment, correlation and

sum average.

The aim of this experiment was to show that

including the global statistics in the segmentation

process, makes the segmentation result less
parameter dependent. Fig. 6 shows the segmenta-

tion results of the fully adaptive algorithm for

three different resolution level ðnÞ and for 2 values
of the regularisation parameter b0 (results (a)). We
observe that the results of the fully adaptive

algorithm depend on the number of the resolution

levels of the DWT. The results are better for four

levels than for a lower number of resolution levels.
This result was expected as the approximation

error of the image statistics by a Gaussian distri-

bution decreases with the resolution levels in

the pyramid (Ashton and Parker, 1995). However,

the proposed approach converges almost to the

same solution for the three values of the resolution

level (see results (b)). This experiment offers a

clear demonstration of the robustness of our al-
gorithm.

5. Conclusion

In this paper, we have proposed an adaptive

region segmentation algorithm based on global

and local statistics in a Bayesian framework. The
enhancement we developed can be regarded as a

generalisation of our previous work (Boukerroui

et al., 1998). The formulation of the segmentation

problem allows us to control the effective contri-

bution of the local and global statistics. The effect

of the weighting introduced to control the adaptiv-

ity of the segmentation process has been illustrated

on synthetic images, a long-axis echocardio-
graphic sequences ð2Dþ TÞ and on 2D breast

ultrasound images. Our experiments indicate that

including the global statistics in an adaptive con-

text improves significantly the segmentation re-

sults and the robustness of the algorithm.

The results obtained with our algorithm on

echocardiographic data gives a good segmentation

result when compared against boundaries of the
left ventricle hand-outlined by a medical expert.

However, a comparison of the segmentation re-

sults with boundaries outlined by multiple ob-

servers would be an important future step to

confirm this conclusion. It would be also inter-

esting to associate our approach with high-level

model-guided segmentation using ‘‘deformable-

templates’’ for instance, which include a priori
knowledge about the expected object.
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Appendix A

In this appendix, we propose a different for-

mulation of the weighting coefficients. The inter-

pretation of this new expression of the weighting
coefficient is easier. For each site s, we adopt the

simplified following notation:

W l ¼ ðW xs
s Þb 2 ½0; 1�;

Dyn ¼ max
all classes

fW lg 
 min
all classes

fW lg;

wl ¼ uðW l
s Þ

Nu
s

:

Hence, from Eqs. (5)–(7), the different weighting
coefficients of the different labels in the analysing

window centred at the site s are given by

wl ¼ aDynþ W lP~kk
l¼1 ðaDyn þ W lÞ

~kk;

¼ 1þ W l 
 W

aDynþ W
; for l ¼ 1; . . . ; ~kk;

¼ 1þ DðW lÞ;

ðA:1Þ

where W is the mean value of fW l; l ¼ 1; . . . ; ~kkg.
The interpretation of the different weighting

coefficients from equation (A.1) is much easier
and we can note the following properties of the

weighting coefficients:
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wl < 1 if W l < W ;
wl > 1 if W l > W ;

DðW lÞ
�� ��|fflfflfflffl{zfflfflfflffl}

a1

< DðW lÞ
����

����|fflfflfflffl{zfflfflfflffl}
a2

if a1 < a2;

lim
a!1

wl ¼ 1;
P~kk
l¼1

wl ¼ ~kk:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ðA:2Þ
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