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Abstract

Microcalci®cations are detected by ®tting a model to every location in the mammogram. Model parameters yielding

the best ®t are used as features for detection and classi®cation. The fraction of true positive (tp) detection is 60% with

1.23 false detections per cm2. The rate of correct classi®cation is 69%. Ó 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Breast cancer is a major cause of death for
women. Many countries recommend regular
screening for women of certain age groups (usually
50±70 yr of age) and those belonging to other high
risk groups. Although these programs are e�ective
in reducing the mortality rate (Andersson, 1998;
Thurfjell and Lindgren, 1994), 10±30% of cancers
which could have been detected are missed (Bird
et al., 1992; Duncan et al., 1998; Holland et al.,
1982) (the wide range of these ®gures stems from
the di�culty in de®ning what is meant by a missed
cancer). In addition, a high percentage of patients
called back at screening turn out not to have
cancer (about 2/3 at BreastScreenSA which over-
sees screening in SA, Australia). In an e�ort to
improve the accuracy of screening programs,

many groups have investigated the possibility of
using computers to assist radiologists in reading
screening mammograms (Bottema and Slavotinek,
1999).

Clustered microcalci®cations are one sign of
cancer which has been the target of many studies
on computer assisted screening. A linear ®lter,
called the boxrim ®lter, was introduced in 1987 by
a group at the University of Chicago (Chan et al.,
1987) to form the basis of a detection scheme
which was extended in subsequent papers (Chan
et al., 1988; Ema et al., 1995; Nishikawa et al.,
1993). Similar approaches using Gaussian ®lters
(Zheng et al., 1995) and splines (Maitournam et
al., 1998) instead of the boxrim ®lter have been
described as well as methods using wavelets (Qian
et al., 1995; Strickland and Hahn, 1996; Zhang et
al., 1998), fractals (Lefebvre and Benali, 1995; Li
et al., 1997), and neural networks (Chan et al.,
1995; Zhang et al., 1996; Zheng et al., 1996).

The detection of calci®cation is important, but
since a large percentage of normal mammograms
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also show some calci®cation, detection by itself is
only of limited value. Classifying calci®cation as
being associated with a benign or malignant pro-
cess requires extracting features of diagnostic im-
portance from the image. Examples of features
reported in the literature for this purpose include
the number of calci®cations in the cluster, mean
area of calci®cations, variation in computed den-
sity, variation in volume, shape irregularity, cir-
cularity, statistical properties of the intensity
surface, properties of co-occurrence matrices, sta-
tistical properties of the distribution of calci®ca-
tions within the cluster, and fractal dimension of
the surrounding tissue (Dhawan et al., 1998; Jiang
et al., 1996; Thiele et al., 1996; Wu et al., 1995).
Many of these features (but not all) are ones that
radiologists use in assessing mammograms.

Although several studies report high detection
and classi®cation rates (Jiang et al., 1996; Wu
et al., 1995; Zhang et al., 1998), there are some
prevailing problems.
1. Most calci®cations are easy to detect both visu-

ally and via a computer algorithm. If a detec-
tion scheme ®nds 90% of all clusters there is a
danger that it has found roughly the same
90% that the radiologist discovers without as-
sistance. Using a random collection of mammo-
grams showing calci®cation for training and
testing algorithms probably biases the routine
toward ®nding clusters which o�er little addi-
tional diagnostic value.

2. Detection algorithms reported in the literature
target all classes of calci®cations at once, de-
spite the fact that there are huge varieties in
shape, size, and contrast.

3. Although the emphasis has rightly been focused
on detecting clusters of calci®cations, once a
cluster is detected, classi®cation depends on
measuring features from a diverse collection
of individual calci®cations within the cluster.
So while a few prominent calci®cations might
su�ce to detect the cluster, improved classi®ca-
tion may well depend on detecting and analyz-
ing subtle examples.

4. Many of the features listed in the previous pa-
ragraph for use in classi®cation are not mean-
ingful if the calci®cation is represented by
only a few pixels.

Our group seeks to mitigate these problems by
developing di�erent detecting schemes for di�erent
classes of microcalci®cations. In this way, detec-
tion is (hopefully) improved by being more fo-
cused and classi®cation is boosted by information
supplied by the various schemes. In this paper,
attention is restricted to the detection of small,
more or less spherical calci®cations. This is done
by constructing a model for such calci®cations
based on the projection of a ball of constant
density. By varying the radius and density of the
model, a best ®t is found. The values of radius and
density which provide the best ®t are used to de-
cide if the candidate is a true calci®cation or not.

2. Methods and materials

2.1. Calci®cation model

The measured intensity of an X-ray beam may
be modeled as

I�x� � I0e
ÿ
R

L
f �z� dz

; �1�
where I0 is the source intensity, f �z� the X-ray
attenuation at a point z in space, x the projection
of z onto the image plane, and L is the path of the
X-ray beam from the source to the detector (®lm).
Scattering is ignored and X-ray beams are as-
sumed to be parallel. Our model consists of a ball
of constant X-ray attenuation, l, embedded in
tissue. We assume that the contribution to the
image intensity surface of the tissue surrounding
the ball is well approximated by a plane at the
scale of the ball (0.4 mm or less). Thus locally, the
measured intensity is

I�x� � I0eÿls�x�ÿ�a�bx�; �2�
where a is a constant, b a constant vector, and s is
the length of the segment formed by the intersec-
tion of L and the ball. If the ball has radius R and
is centered above the origin,

s�x� � 2

��������������������
R2 ÿ kxk2

q
; if R2 ÿ kxk2 P 0;

0; otherwise:

(
�3�

The connection between density and X-ray atten-
uation, the ®lm response, and the characteristics of
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the digitizer are all approximated by linear pro-
cesses so that the shape of the model is not altered.
After suitable transformation of the raw image
data, the model for the calci®cation in the mam-
mogram is given by

h�x� � a� bx� k
��������������������
R2 ÿ kxk2

q
; �4�

where a; b; k and R are to be determined. The value
of k is only related to the density of the calci®ca-
tion, but it will be referred to as density for sim-
plicity.

2.2. Data

Film mammograms were obtained from the
archives of BreastScreenSA in Adelaide, SA,
Australia. Cases showing cancer were included
only if veri®ed by pathology and normals were
included only if no cancer was found after 3 yr.
Films were digitized at 50 l resolution and 12 bit
depth using a Lumisys Lumiscan 150 laser digi-
tizer.

The images were reviewed and electronically
annotated by a radiologist experienced in mam-
mography (JPS) to indicate the location of clusters
of microcalci®cations. In six of the images, the
location of 113 individual calci®cations were
marked.

2.3. Detection of microcalci®cations

The detection algorithm comprises preliminary
detection of candidate calci®cations, model ®tting,
and parameter estimation, and ®nally deciding if
the candidate is a true calci®cation or not.

2.3.1. Preliminary detection
The boxrim ®lter of Chan et al. (1987) was used

to identify the candidate of microcalci®cations. A
threshold was chosen just high enough so that
connected sets in the resulting binary image
formed mainly isolated convex sets. Large (more
than 80 pixel) connected sets were discarded as
were sets of irregular shape. The density of con-
nected components in the resulting binary image is
roughly 150 sets per cm2 so the locations of true
calci®cations are very likely to be represented. For

each such set, the location of the maximum value
was adopted as the center of a candidate calci®-
cation. These steps are displayed in Fig. 1.

2.3.2. Model ®tting and feature extraction
For each candidate location in the image, esti-

mates of a; b; k, and R were determined by mini-
mizing

E�a; b1; b2; k;R� �
X
�i;j�2X

/2�i; j�; �5�

where

/�i; j� � g�i; j� ÿ �a� b1i� b2j� ks�i; j��; �6�
g�i; j� is the image intensity value at �i; j�, X a
discrete approximation of the disk of radius

���
2
p

R
centered at the candidate location, and s is as in

Fig. 1. (a) A region showing a cluster of calci®cations of lob-

ular type. (b) The image after applying the boxrim ®lter and

thresholding. Calci®ed artery walls are clearly seen in the upper

right corner. (c) Each connected component in (b) has been

replaced by a single pixel located at the maximum intensity

value within the component. For display purposes, each such

pixel is represented by a 3� 3 patch. The large obvious calci-

®cation is not included and the irregular patches in the upper

right corner of (b) have also been correctly rejected. (d) The

locations judged by the algorithm to correspond to true calci-

®cations. This particular image provided the poorest detection

rate and highest fp rate of those tested but is interesting for its

diversity.
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Eq. (3). For ®xed R, / is linear in a; b1; b2, and k,
so simple regression was used to ®nd optimal
values for these parameters.

The minimum of E over all parameters was
found by repeating this process for di�erent values
of R (Fig. 2). In the experiments reported here, the
values of R used were 1:0; 1:3; 1:6; . . . ; 4:0.

2.3.3. Detection criteria
Detection was based solely on the radius, R,

and the density parameter, k, of the best ®tting
model. The radius and density were estimated for
approximately 3000 candidate calci®cations of
which 34 were true calci®cations as indicated by
the radiologist. A decision curve to separate true
and false candidates was constructed as described
in the next paragraph based on all true and false
examples with estimated radius less than 4 pixels
(Fig. 3).

For each radius R, the histogram of measured
densities of false candidates showed an abrupt
upper limit k0�R� beyond which very few (<0.2%)
measurements were recorded. The decision curve
was generated by ®nding the best ®tting expo-

nential function through the points �Ri; k0�Ri��.
The resulting curve is given by

d�R� � 4:2� 77:8298eÿ0:9985R: �7�
(The choice of ®tting an exponential curve is
heuristic. Since k is a surrogate for density, the
observed trend may be a consequence of dimensi-
onality, but further investigation is required.)

Two additional criteria were imposed. The ®rst
was aimed at eliminating artifacts due to ®lm
¯aws. These appear as very bright intensity values
restricted to a cluster of about 4 pixels or less.
After examining the location of known artifacts of
this type, an upper limit of density was set at 40.
The second criterion stemmed from the fact that
best ®t models with minimum or maximum radius
are not reliable. Because only ®nitely many radii
were allowed, true calci®cations with large radii
end up with best ®ts at maximum value of the
radius, regardless of the true radius. Also, loca-
tions which do not resemble the model well for any
set of parameters are likely to ®nd the best ®t by
matching the single pixel local maximum which
provided their status as candidate calci®cation
during preprocessing.

In summary, a candidate was judged to be a
calci®cation if

d�R� < k < 40 and 1:5 < R < 4:0: �8�

Fig. 2. (a) A surface plot of a calci®cation. Note that the

background exhibits local ¯uctuation plus a gradual change in

intensity. (b) A plot of the error, E, as a function of the radius

of the model. The smallest error in this example was found with

R � 2:5. (c) A plan view of the calci®cation with a circle of

R � 2:5 centered on the local peak intensity value. The gradual

background change is also apparent in this representation.

(d) The best ®t model for this example.

Fig. 3. True calci®cations are marked ``o'' and other candidates

are marked ``�''. The solid line is the curve in Eq. (7).
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2.4. Classi®cation of calci®cations

The detection algorithm assigned 109 locations
as being the site of a calci®cation within a cluster
(calci®cations detected in isolation are routinely
dismissed as not being of diagnostic interest). Of
these, 60 were from clusters of ductal carcinoma in
situ (DCIS) (small cell) and 49 were from clusters
of lobular calci®cations. DCIS clusters are asso-
ciated with cancers and lobular microcalci®cations
are an example of a benign type. All locations
found by the detection algorithm, whether marked
as true calci®cations by the radiologist or not, were
classi®ed as being lobular or DCIS (small cell)
based solely on the goodness of ®t value, E. The
motivation for using this criterion is that lobular
calci®cations tend to be round and smooth while
DCIS (small cell) tend to be generally spherical but
with irregular surfaces.

3. Results

Table 1 summarizes the detection rates for the
algorithm described here and for a previous ver-
sion (Bottema and Slavotinek, 1998). For training
and testing images, the percentage of true positive
(tp) detections is given and the false positive (fp)
rate is given in terms of the number of false posi-
tive detections per cm2. The algorithm was also
applied to a number of ``normal'' images, meaning
cases where no indications of cancer were found at
screening and no cancer developed within 3 yr.

The higher rate of true detection in the test set
compared with the training set may be due to in-
su�cient randomization in dividing the available
cases into test and training sets.

Of the 60 locations found by the detection al-
gorithm within known clusters of DCIS (small cell)
microcalci®cations, 72% were correctly identi®ed
as DCIS (small cell) by classi®cation based only on

the goodness of ®t parameter, E. This classi®cation
was per individual calci®cation and did not con-
sider parameter values of neighboring calci®ca-
tions. Of the 49 lobular microcalci®cations, 65%
were identi®ed correctly. The overall rate of cor-
rect classi®cation for the two types of calci®cation
together was 69%.

4. Discussion

For reasons stated in the introduction, atten-
tion was restricted to clusters of calci®cations
which are di�cult to detect. In particular, only
calci®cations of radius less than 0.2 mm were
considered. In comparing the performance with
our previous work, a moderate reduction in the
detection rate was well compensated for by a
substantial reduction in the fp detection rate.

The performance of the detecting algorithm is
di�cult to assess independently of the perfor-
mance of a full scheme for computer assisted
screening mammography. Table 1 reports the
percent of true detections, but this is based on the
radiologists judgement. The disease state of the
tissue associated with the cluster can be ascer-
tained by histopathology, but the location of in-
dividual calci®cations cannot be veri®ed. This
problem is exacerbated by the fact that only subtle
calci®cations are of primary interest. In some in-
stances, locations recorded as fps, were later
identi®ed by the radiologist as possible or proba-
ble calci®cation.

The ultimate goal is to decide if there are clus-
ters of microcalci®cations associated with cancer.
From this point of view, the question of whether a
certain location represents no calci®cation or a
benign calci®cation is moot. Accordingly, the
purpose of the algorithm for initial detection is not
necessarily to detect just microcalci®cations, but to
detect points in the image which serve as a basis

Table 1

Detection rates

Method Train (% tp) Train (fp) Test (% tp) Test (fp) Normal (fp)

Current 59 0.79 60 1.23 0.56

Previous 63 1.68 77 3.21 1.82
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for correct classi®cation of the image as showing
signs of a malignant cluster or not. The results
suggest that locations other than those identi®ed
by an experienced radiologist as representing
microcalci®cations can contribute to identi®cation
of cancer. This suggestion is currently being in-
vestigated.
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