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Abstract

A multiresolution analysis system for interpreting digital mammograms is proposed and tested. This system is based on using frac-
tional amount of biggest wavelets coefficients in multilevel decomposition. A set of real labeled database is used in evaluating the pro-
posed system. The evaluation results show that the system has a remarkably high efficiency compared by other systems known till present
especially in the area of distinguishing between benign and malignant tumors.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Breast cancer is one of the most dangerous types of can-
cer among women all over the world. Early detection of
breast cancer is essential in reducing life fatalities (Pisani
et al., 1993). However, achieving this early detection of
the cancer is not an easy task. Although that the most ac-
curate detection method in the medical environment is
biopsy; it is an aggressive invasive procedure that involves
some risks, patient discomfort and high cost. Moreover,
there is a high percent of negative cases (70–90%) where
breast biopsies were performed unnecessarily (Meyer
et al., 1990). Therefore, digital mammography has been
used in attempts to reduce the negative biopsy ratio and
the cost to society by improving feature analysis and refin-
ing criteria for recommendation for biopsy (Sickles, 1991).
Digital mammography is a convenient and easy tool in
classifying tumors and many applications in the literature
prove its effective use in breast cancer diagnosis (e.g.
Mudigonda et al., 2000, 2001).
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Image features extraction is an important step in the
preprocessing of signal processing techniques. The features
of digital image could be extracted directly from the spatial
data or from a different space. Using a different space by
special data transform such as Fourier transform or
wavelets transform could be helpful to separate a special
data that contain specific characteristics. Detecting the
features of image texture is a difficult process because
these features (or this texture) are mostly variable and
scale-dependent.

Designing an effective diagnosis system for digital mam-
mograms is still a challenging problem that needs more
investigation. Two main functions should be included in
such a system; the first is to distinguish between the normal
tissues and the different types of tumors such as microcal-
cification clusters, spiculated lesions, circumscribed masses,
ill-defined lesions. The second function is to differentiate
between benign and malignant tumors. Mammogram fea-
tures extraction is widely studied from the side of pattern
recognition analysis to detect the best features that could
represent mammogram. This is a difficult task due to the
irregularity of mammograms texture. The shortage of diag-
nosis using mammograms is mostly due to human factor as
the abnormality indicators are varied in shape, size, and

mailto:essam@khawarizmi.com
mailto:essam.rashed@gmail.com


Fig. 1. Sample of mammograms used: (a) microcalcification clusters up
benign (mdb019) and down malignant (mdb209), (b) ill-defined masses up
benign (mdb032) and down malignant (mdb058), (c) circumscribed masses
up benign (mdb005) and down malignant (mdb028), (d) spiculated lesions
up benign (mdb145) and down malignant (mdb178), (e) normal tissues
(tumor free) up (mdb006) and down (mdb009).

1 http://peipa.essex.ac.uk/ipa/pix/mias/.
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brightness. Also, vessels and muscles could be confused
parameters as they appear in similar shapes of tumors.
The most common shortage is the unclearly distinguish
between the benign and malignant lesions (Sickles, 2000).

In this paper, an effective supervised classifier for mam-
mograms is proposed using the discrete wavelet transform
decomposition. The achieved numerical results indicate the
effectiveness of the classifier in solving three basic problems
in mammogram diagnosis:

1. Classification of cancerous versus cancerous-free
patterns.

2. Classification of abnormality indicator (i.e. microcalcifi-
cations, circumscribed masses, spiculated lesions, and
ill-defined masses).

3. Classification of risk level of cancerous cells (i.e. benign
versus malignant).

This paper consists of five sections, Section 1 contains
this introduction, Section 2 discusses the properties of typ-
ical mammogram and its classes and a literature review of
most recent work in mammogram classifications. The main
problem discussion and a multiresolution approach are
presented in Section 3. The achieved numerical results are
presented and discussed in Section 4 while Section 5 con-
tains the conclusion and future work.

2. Digital mammograms

The mammogram is acquired by compressing the
patient breast between two acrylic plates while an X-ray
signal is emitted through. A typical mammogram is a gray
scale image that indicates the details inside the patient
breast by meaning of contrast. These details could be
normal tissues, vessels, muscles, different types of masses,
and noise.

Each type of masses has different properties of shape,
size, distribution, and brightness which act as features that
help the radiologist to effectively diagnosis the breast
tumors. This means that the experience of the radiologist
and the image quality are the main important factors in
this manual classification. Microcalcifications are small
groups of calcified cells that have a long scale in form, size
and distribution. Circumscribed masses mostly appear as
uniform and smooth masses in the shape of irregular cir-
cles. Spiculated lesions appear as a region with segments
distributed in many directions as a multi-arms star. Ill-
defined masses do not have a fixed pattern (Liu et al.,
2001). Fig. 1 shows some examples to these features.

Another diagnosis classification that needs to be investi-
gated is to check the dangerous level of cancerous cells
which can be either benign or malignant. In some cases,
there were no exact difference in shape between benign
and malignant lesions and they could be identified only
using biopsy. This ranks the computerized solution of this
problem as important contribution in mammogram
diagnosis.
In the present study, a set of images that are provided by
the Mammographic Image Analysis Society (MIAS 1) are
used in applying the new diagnosis technique. These images
are previously investigated and labeled by an expert radiol-
ogist based on a technical experience and a biopsy. The ori-
ginal mammograms are 1024 · 1024 pixels. This database
is selected according to the variety cases included and
widely usage in similar research work. Table 1 illustrates
the distribution of the selected images in our experiment.
From the selected images a regions of interest (ROI’s) are
extracted with size of 128 · 128 pixels. Theses ROI’s con-
tain the abnormality centered. Fig. 1 shows that distin-
guishing different types or levels of abnormality by using
visual properties is a very difficult task that contains a large
scale of risk. This visual detection could be improved by
using a double reading system. Pervious studies proved
that using a computerized classification improves this
visual classification with high successive rates (e.g.
Mello-Thoms, 2003; Chan et al., 1990; Chen et al., 1999)
However, designing a complete computerized classification
system for digital mammogram is still a challenging prob-
lem and many researchers suggested different solutions to
provide an optimum system; a survey is presented by
Cheng et al. (2003). A review of the most recent solutions
will be discussed in this section.

A wavelet based algorithm is proposed by Boccignone
et al. (2000) for detecting the microcalcification clusters
in digital mammogram. A thresholding technique was used
to separate microcalcifications from the background tex-
ture. This technique was based on Renyi’s entropy. They
achieve successive results by applying it to Nijmegen mam-
mogram data set. A computer-aided diagnosis (CAD) sys-
tem was developed by Yu and Guan (2000) for automatic
identification of microcalcification clusters in digitized
mammogram films. In this system microcalcification pixels
are segmented out using mixed features obtained from
wavelet transform and gray level statistical analysis and
labeled into potential individual microcalcification objects.

http://peipa.essex.ac.uk/ipa/pix/mias/


Table 1
The distribution of selected cases from MIAS database

Norm Calc Circ Ill Spic Total

B M B M B M B M

Fty 66 02 04 10 02 02 05 02 03 96
Dns 76 05 05 03 0 01 01 05 02 98
Gld 65 05 04 06 02 03 02 04 03 94

Total 207 12 13 19 04 06 08 11 08 288

Class of abnormality present

Norm normal tissue
Calc microcalcification clusters
Circ circumscribed masses
Ill ill-defined masses
Spic spiculated lesions

Background tissue

Fty fatty
Gld fatty-glandular
Dns dense-glandular

Cancerous level

B benign
M malignant
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Then, these individual microcalcification objects are classi-
fied as true or false individual microcalcification objects
based on a set of 31 features. They achieve 90% mean true
positive (TP) detection rate at the price of 0.5 false positive
(FP) per image.

A CAD system designed by Kita et al. (2002) for esti-
mating the 3D positions of lesions found in two mammo-
graphic views is described. The method calculates curved
epipolar lines by developing a simulation of breast defor-
mation into stereo camera geometry. Using such curved
epipolar lines, not only can we determine point correspon-
dences, but can estimate the 3D location of a lesion. The
correctness of the 3D positions calculated by the system
is examined using a set of breast lesions. Lee et al. (2003)
present a shape recognition-based neural network built
with universal feature planes, called Shape Cognitron
(S-Cognitron) is introduced to classify clustered microcalci-
fications. The system is evaluated by using Nijmegen
mammogram database and experimental results show that
sensitivity and specificity can reach 86.1% and 74.1%,
respectively. An approach for classifying clusters of micro-
calcifications is proposed by De Santo et al. (2003). This
approach is based on a Multiple Expert System; such sys-
tem aggregates several experts, some of which are devoted
to classify the single microcalcifications while others are
aimed to classify the cluster considered as a whole. The
final output results from the suitable combination of the
two groups of experts. The tests performed on a standard
database of 40 mammogram images.

In their mammogram analysis study, Liu et al. (2001)
proved that the use of multiresolution analysis of the mam-
mograms improve the effectiveness of any diagnosis system
based on wavelets coefficients. They use a set of statistical
features with binary tree classifier in their diagnosis system.
Later, Ferreira and Borges (2003) indicate that the use of
the biggest wavelets coefficients in the low frequency coef-
ficients of wavelets transform could be use as a signature
vector for the corresponding mammogram. In their study
they use Haar and Daubechies-4 wavelets with selection
of 100, 200, 300, and 500 biggest wavelets coefficient. This
approach is applied on some images selected from MIAS
database. A ROI’s of 64 · 64 pixels are selected from the
original mammograms. Classification is done by measures
the Euclidean distance between class prototype and desired
mammogram coefficient vector. They achieve an interesting
results classifying the lesion types and to distinguish
between benign and malignant tumors (i.e. they reach
100% correct classification rate in some cases).

3. Multiresolution analysis and the new approach

Image texture is a confusing measurement that depends
mainly on the scale in which the data are observed. Different
types of image have different types of texture. Earlier studies
proved that the texture of mammograms is an irregular tex-
ture. Accordingly, some measurements like entropy, energy,
contrast and homogeneity could be improved when com-
bined with a multiresolution domain transform. To design
an automated mammogram classifier, an uncorrelated mea-
surement needs to be investigated to transform the data into
a different domain. The mammogram classifying problem
needs a transform that can uncorrelate the data without los-
ing the image main characteristics. These properties mean
that discrete wavelets transform is the most suitable trans-
form for mammograms features extraction.

The idea of wavelets that is explained in details by
Daubechies (1992) who stated that wavelets are functions
that are used as the basis to represent other functions. This
one is called mother wavelet. A set of functions can be gen-
erated by translations and dilations of the mother function.
Suppose that W(x) is a mother function, the translations
and dilations will be Wðx�b

a Þ, while a 2 Rþand b 2 R. The
values of a and b can be calculated using a = 2�j and
b = k Æ 2�j while k and j are integers.

Wavelets decomposition is based on applying 2D wave-
lets transform to the image and a set of four different coef-
ficients are produced in each level of decomposition. The
produced coefficients are

– Low frequency coefficients (A).
– Vertical high frequency coefficients (V).
– Horizontal high frequency coefficients (H).
– High frequency coefficients in both directions (D).

Three levels of 2D wavelets decompositions are illus-
trated in Fig. 2. In this study, we use a four different levels
of decompositions based on three different wavelets that
are Daubechies-4, Daubechies-8, and Daubechies-16. In
each level of decomposition, a percentage of the low fre-
quency coefficients is used to represent the corresponding
mammogram (i.e. feature vector). The idea of using a
group of biggest coefficients is previously presented by
Ferreira and Borges (2003). This idea is extended here



Fig. 2. Wavelets multiresolution decomposition.
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not only by testing a fixed amount of values but also by
covering all possible rates (10–90%) of low frequency coef-
ficients that may contribute positively to the classification
rate. Another idea implemented here was previously dis-
cussed by Liu et al. (2001) and extended here by applying
multilevel wavelet decomposition, exactly four levels of
decomposition. In conclusion, two main ideas are explored
in this paper. The first idea is using fractions of wavelets
coefficients as a signature vector and the second idea is
applying this in different levels of decompositions.

A set of 288 ROI’s that are extracted from one original
mammogram from MIAS database are used to test the new
algorithm. The Euclidean distance is used to design the
classifier that is based on calculating the distance between
the feature vectors and the class core vector. The system
automatically classifies the feature vector to a diagnosis
Fig. 3. The multiresolution mam
class Cdiag by finding the nearest class to this vector. This
is done by testing the distance between this feature vector
and all class core vectors. Class core vectors are previously
calculated using a set of specific class ROI’s. The following
equations describe the classification method.

DistðA;CdiagÞ ¼MinDist; ð1Þ
MinDist ¼ min

16m6M
ðDistðA;CmÞÞ; ð2Þ

DistðA;CmÞ ¼
1

J

XJ

j¼1

XLj

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAjðiÞ � Cj

mðiÞÞ
2

q
; 1 6 m 6 M :

ð3Þ

While Aj is the coefficient vector of the jth decomposition
level for diagnosis image, Cj

m is the class core vector for class
m at decomposition level j, Lj is the length of coefficient
mogram diagnosis system.



Table 2
Successful rates of classification, in percentage with Daubechies-4, -8, -16 wavelets

Selected wavelet
coefficients (%)

Daubechies-4 Daubechies-8 Daubechies-16

Spic Circ Calc Ill Norm Spic Circ Calc Ill Norm Spic Circ Calc Ill Norm

10 84.2 47.8 52 78.6 96.1 89.5 87 72 85.7 96.6 84.2 65.2 64 71.4 87
20 100 82.6 48 85.7 88.9 100 78.3 80 100 92.3 94.7 82.6 76 71.4 82.1
30 94.7 95.7 64 71.4 99.5 89.5 100 80 100 99 100 91.3 76 78.6 99.5
40 63.2 91.3 76 57.1 96.6 57.9 95.7 96 92.9 100 93.2 100 76 64.3 93.2
50 68.4 39.1 100 64.3 89.4 73.7 60.9 100 78.6 100 68.4 47.8 96 92.9 88.9
60 73.7 56.5 92 50 79.2 78.9 60.9 88 57.1 99.5 73.7 52.2 92 85.7 83.6
70 78.9 65.2 88 92.9 84.1 84.2 65.2 80 78.6 85.5 89.5 65.2 72 100 90.3
80 89.5 82.6 92 85.7 85.5 100 87 72 78.6 90.3 84.2 91.3 72 85.7 58.9
90 84.2 82.6 80 57.1 91.3 94.7 78.3 76 85.7 98.1 78.9 73.9 68 57.1 69.1

Table 3
Successful rates of classification, in percentage with Daubechies-4, -8, -16 wavelets

Selected wavelet
coefficients (%)

Daubechies-4 Daubechies-8 Daubechies-16

Benign Malignant Benign Malignant Benign Malignant

10 83.3 84.8 97.9 84.8 100 84.8
20 93.8 81.8 100 81.8 95.8 51.5
30 100 84.8 100 78.8 91.7 81.8
40 89.6 84.8 97.9 81.8 91.7 87.9
50 87.5 87.9 95.8 90.9 89.6 90.9
60 87.5 93.9 93.8 51.5 87.5 93.9
70 87.5 100 91.7 100 85.4 97
80 85.4 93.9 91.7 100 87.5 100
90 64.6 97 93.8 87.9 87.5 93.9

2 <http://www.dsp.rice.edu/software>.
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vector at decomposition level j, M is the number of classifi-
cations classes (equals 5 for tumor types diagnosis and 2 for
risk level diagnosis), and J is the number of decomposition
levels used (here J = 4).

The class core vector for each decomposition level Cj
m is

previously calculated using a set of 25% of class ROI’s
randomly selected from the dataset using the following
equation:

Cj
m ¼

1

Nj

XNj

n¼1

XLj

i¼1

Aj
mðiÞ; 1 6 m 6 M ; ð4Þ

where N j is the number of selected ROI’s to produce the
class core vector at decomposition level j, and Aj

m is the
coefficient vector for ROI’s for the class m at decomposi-
tion level j.

The images that are used in testing the effectiveness of
the proposed system are decomposed into four level of
decomposition using Daubechies-4, -8, -16 wavelets. In
each experiment, a class core vector is calculated for each
class using Eq. (4) then all the ROI’s extracted from the
MIAS database is used in the test phase including those
used to produce the class core vectors. Eq. (3) is used to
measure the distance between the coefficient vector A and
all available classes’ core vectors. This done by find the
average mean for a four distances measured in the four
decomposition levels. The system is diagnosis the coeffi-
cient vector to a specific class using Eqs. (1) and (2).
Fig. 3 illustrates the steps of creating the class core vectors
and also the similar steps of diagnosis mammogram image.
4. Results and comments

In the practical experiment, two main problems are cov-
ered, to distinguish between the types of tumors according
to the physical properties and to classify these tumors
according to the level of risk. In the first problem, five clas-
ses are used as main classes that are microcalcifications,
spiculated lesions, circumscribed lesions, ill-defined lesions,
and normal tissues. The second problem consists of two
main classes that are benign and malignant tumors.

The Daubechies-4, Daubechies-8, and Daubechies-16
wavelets are used in the decomposition process while Rice
Wavelets Toolbox 2 is used to apply the wavelets transform
process. In each class, four levels of decompositions are
applied, and then a fractional percent of the biggest coeffi-
cients is used to be the feature vector of the corresponding
mammogram. Table 2 shows the successful classification
rate during using Daubechies-4, -8, -16 in all different frac-
tions of coefficients used for solving the first problem.

From the results in Table 2, using Daubechies-4 wave-
lets, a 100% successful classifying rate is reached in spicu-
lated lesions when a set of 20% of coefficients is used.
For circumscribed lesions 95.7% of classification rate is
achieved using 30% of the coefficients. In microcalcifica-
tion, a 100% rate is achieved when 50% of the coefficients
are used to measure the distance, while ill-defined lesion
peaks at 70% of the coefficients and scores 92.9%. The

http://www.dsp.rice.edu/software


Fig. 4. Diagnosis results for all classes: (a) spiculated lesions, (b) circumscribed masses, (c) microcalcification clusters, (d) ill-defined masses, (e) normal
tissues (mass-free), (f) benign lesions, (g) malignant lesions.
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normal tissue mammograms achieve the maximum success-
ful classification rate (99.5%) when 30% of the coefficients
are used.

Daubechies-8 shows slightly better results than in Dau-
beshies-4. In spiculated lesions, it achieves two peak points
at 20% and 80% of the coefficients, while circumscribed
lesions reach full successful classification rate 100% at
30%. Microcalcifications peak is still record 100% at the
same point 50% while ill-defined lesion records a rate of
100% at 20% and 30%. The normal tissue achieve 100%
peak at two points 40% and 50%. When Daubechies-16
is used spiculated lesions achieve 100% peak point at 30%
of the coefficients values, while circumscribed lesions reach
rate of 100% at 40%. Microcalcifications peak is reduced to
96% at the same point 50% of the coefficients, while ill-
defined lesion record 100% rate at 70%. The normal tissue
achieve 99.5% successful classification rate when 30% of
the coefficients are used.

From these results it can be concluded that using Dabe-
chies-8 produces the most significantly correct classification
rates. Spiculated lesions are classified better in the first
quarter of biggest coefficients. Circumscribed lesions,
microcalcification, and normal tissues achieve most accu-
rate successful classifications within the second quarter of
selected coefficients. No fixed range could be detected for
the ill-defined lesions; this may be due to their wide range
of shapes. The results illustrated in Table 3 shows the clas-
sification rate when using Daubechies-4, -8, and -16 wave-
lets for detecting the risk level of ROI’s. It is clear from the
tables that benign lesions achieve the best results in the sec-
ond quarter and malignant ones in the last quarter. It is
also clear that Daubechies-8 is still the most successful
choice of wavelets. A summary of these results is shown
in Fig. 4.

5. Conclusions and future work

Digital mammogram diagnosis is a practical field of
investigation and positive results could effect the human
being life preventing. In this study, a novel model is pro-
posed by gathering two main concepts proved earlier; the
concept of using biggest wavelets coefficients as a feature
vector and the idea of using multiresolution analysis in
mammograms features extraction. Experiment is applied
on real labeled data and results show promising use of this
technique and flexibility of modifying. The results are
enhanced compared to those presented by Ferreira and
Borges (2003). We believe that this positive enhancement
is occurring as a result of using multilevel of wavelets
decomposition analysis. The results also marks a special
area of the wavelets coefficients that could high percent
of successive indicates each class of tumors (e.g. spiculated
lesions are correctly diagnosis within the first quarter of
biggest wavelets coefficients). Future steps could include
many distinct modifications; the effect of using other wave-
lets rather than Daubechies could be tested, the change of
the coefficients groups (i.e. using H, L, or D) could be
traced, and extended the number of decomposition levels.
All these factors could affect positively or negatively to
the results we achieved here.
References

Boccignone, G., Chianese, A., Picariello, A., 2000. Computer aided
detection of microcalcifications in digital mammograms. Comput.
Biol. Med. 30, 267–286.

Chan, H.-P., Sahiner, B., Helvie, M.A., Petrick, N., Roubidoux, M.A.,
Wilson, T.E., Alder, D.D., Paramagul, C., Newman, J.S., Sanjay-
Gopal, S., 1990. Improvement of radiologists characterization of mam-
mographic masses by using computer-aided diagnosis: An ROC study.
Radiology 212, 817–827.

Chen, D.-R., Chang, R.-F., Huang, Y.-L., 1999. Computer-aided diag-
nosis applied to US of solid breast nodules by using neural networks.
Radiology 213, 407–412.

Cheng, H.D., Cai, X., Chen, X., Hu, L., Lou, X., 2003. Computer-aided
detection and classification of microcalcifications in mammograms:
A survey. Pattern Recognition 36 (12), 2967–2991.

Daubechies, I., 1992. Ten lectures on wavelets. SIAM CBMS-NSF Series
on Applied Mathematics, vol. 61. SIAM.

De Santo, M., Molinara, M., Tortorella, F., Vento, M., 2003. Automatic
classification of clustered microcalcifications by a multiple expert
system. Pattern Recognition 36, 1467–1477.

Ferreira, C.B.R., Borges, D.L., 2003. Analysis of mammogram classifi-
cation using a wavelet transform decomposition. Pattern Recognition
Lett. 24, 973–982.

Kita, Y., Tohno, E., Highnam, R.P., Brady, M., 2002. A CAD system
for the 3D location of lesions in mammograms. Med. Image Anal. 6,
267–273.

Lee, S.-K., Chung, P.-C., Chang, C.-I., Lo, C.-S., Lee, T., Hsu, G.-C.,
Yang, C.-W., 2003. Classification of clustered microcalcifications using
a shape cognitron neural network. Neural Networks 16, 121–132.

Liu, S., Babbs, C.F., Delp, E.J., 2001. Multiresolution detection of
spiculated lesions in digital mammograms. IEEE Trans. Image
Process. 10 (6), 874–884.

Mello-Thoms, C., 2003. Perception of breast cancer: Eye-position analysis
of mammogram interpretation. Acad. Radiol. 10, 4–12.

Meyer, J.E., Eberlein, T.J., Stomper, P.C., Sonnenfeld, M.R., 1990.
Biopsy of occult breast lesions: Analysis of 1261 abnormalities. J.
Amer. Med. Assoc. 263, 2341–2343.

Mudigonda, N.R., Rangayyan, R.M., Leo Desautels, J.E., 2000. Gradient
and texture analysis for the classification of mammographic masses.
IEEE Trans. Med. Imaging 19 (10), 1032–1043.

Mudigonda, N.R., Rangayyan, R.M., Leo Desautels, J.E., 2001. Detec-
tion of breast masses in mammograms by density slicing and texture
flow-field analysis. IEEE Trans. Med. Imaging 20 (12), 1215–1227.

Pisani, P., Parkin, D.M., Ferlay, J., 1993. Estimates of the worldwide
mortality from eighteen major cancers in 1985: Implications for
prevention and projections of future burden. Internat. J. Cancer 55,
891–903.

Sickles, E.A., 1991. Periodic mammographic follow-up of probably benign
lesions: Results in 3,184 consecutive cases. Radiology 179, 463–468.

Sickles, E.A., 2000. Breast imaging: From 1965 to the present. Radiology
215, 1–16.

Yu, S., Guan, L., 2000. A CAD system for the automatic detection of
clustered microcalcifications in digitized mammogram films. IEEE
Trans. Med. Imaging 19 (2), 115–126.


	Multiresolution mammogram analysis in multilevel decomposition
	Introduction
	Digital mammograms
	Multiresolution analysis and the new approach
	Results and comments
	Conclusions and future work
	References


