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In this paper we propose a method to evaluate segmentation cuts for handwritten touching digits. The
idea of this method is to work as a filter in segmentation-based recognition system. This kind of system
usually rely on over-segmentation methods, where several segmentation hypotheses are created for each
touching group of digits and then assessed by a general-purpose classifier. The novelty of the proposed

methodology lies in the fact that unnecessary segmentation cuts can be identified without any attempt
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of classification by a general-purpose classifier, reducing the number of paths in a segmentation graph,
what can consequently lead to a reduction in computational cost. An cost-based approach using ROC
(receiver operating characteristics) was deployed to optimize the filter. Experimental results show that
the filter can eliminate up to 83% of the unnecessary segmentation hypothesis and increase the overall
performance of the system.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The recognition of unconstrained handwritten numerals is still a
very active area of research. It is composed of several steps, including
image acquisition, pre-processing, segmentation, representation, and
recognition [1]. Segmentation is a very challenging task as we need
to "split" two or more digits so that they can be later recognized by
a general-purpose classifier; but we also need to know what we are
segmenting and that involves some recognition. Early methods used
to make heavy use of constraints on document format in order to
reduce segmentation complexity. On first generation OCR's, due to
memory limitation, each character had to be scanned individually
before its recognition. This approach required pre-scans, where the
positions of the characters to be recognized had to be detected first,
with the use of reference marks [2].

There are two main tasks in segmentation. The first is connected
component detection. Through connected component detection, all
the elements are identified. These elements can be isolated dig-
its, broken parts of digits, delimiters, and touching digits. Usually
some post-processing is added to this task so broken parts can be
grouped. The second and most challenging task is the segmentation
of touching digits. A connection between two digits occurs when
their foreground pixels merge, creating a bigger connected compo-
nent. There are two major categories of touching numeral strings,
single- and multiple-touching [3]. Fig. 1 shows the most common
types of touching.
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Casey and Lecolinet [1] proposed a taxonomy for segmentation
strategies. According to them, the segmentation strategies can be
found in an orthogonal space with three axes, namely recognition-
based, holistic, and dissection. Usually, recognition-based methods
make less use of heuristics. However, they usually generate too many
segmentation hypotheses, and it can become a bottleneck as each
digit of these hypotheses has to be later verified by a general-purpose
classifier. The dissection methods, otherwise, usually generate less
segmentation hypotheses, but depend heavily on heuristics. The lit-
erature has many examples that show this taxonomy [4-6].

In Fujisawa et al. [2], heuristics are avoided but an average of
three segmentation points are found for each two-digit string. In
Chen and Wang [3], the use of heuristics is also avoided, but in
this case, the average of points found for each two-digit touching
string is 7.3 [7]. Fig. 2a gives an insight of how many hypotheses
should be evaluated by the classifier due to over-segmentation. In
this case, suppose that an algorithm proposes SPy, SPy, and SP, as
segmentation cuts, which will divide the image in four segments
(Co, Cq, Gy, and C3). The set of possible segmentation hypotheses can
be represented by a graph, where each segment is represented by a
vertex and each segmentation cut is represented by an edge in this
graph. SP; is the optimal segmentation cut, while SPy and SP, are
unnecessary cuts generated due to the over-segmentation nature of
the segmentation algorithm.

A segmentation cut is an "incision" which is applied to a given
section of a stroke, which splits the connected component in two
parts. Since a connected component may contain more than one
character and the connection can occur in more than one re-
gion, a common approach is to apply more than one "incision".
Each segmentation cut can be turned "on" and "off" accordingly.
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The combination of segmentation cuts and their states ("on" and
"off'") for a given connected component will determine the set of
segmentation hypotheses. A segmentation hypothesis can be seen
though as one of the 2N possible states, where N is the number of
segmentation cuts. A segment will be one of the resulting pieces
of the connected component after the "incisions" corresponding to
a given state have been applied. Here, a segmentation hypothesis
can also be seen as the union of such segments. For example, on
Fig. 2, if all segmentation points where turned "on", it would result in
four segments. This segmentation hypothesis is represented by the
central path of the depicted graph. In Fig. 2, the optimal hypothesis
is obtained when SPq is turned "on" and SPy and SP, are turned "off".
However, turning SP; and SP, "on" and SPy "off" will also result in a
high recognition score, in the system proposed by Oliveira et al. [8],
leading to recognition error.

The segmentation hypotheses can be generated by several differ-
ent ways. In the case of Fig. 2a we simulated a classic segmentation
algorithm that uses peaks and valleys of the contour to define seg-
mentation cuts.

Finding optimal segmentation cuts in a straightforward and gen-
eral manner is something very difficult due to variability in the
location of segmentation cuts. Furthermore, some results of over-
segmentation can be easily confused with an isolated digit (e.g.,
Fig. 2b where those pieces can be confused with the digits "1" and
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"0"). In the example depicted in Fig. 2a, the path "510" may produce
a higher score than the path "56". This kind of problem makes the use
of heuristics to some extent necessary. In this context, a challenging
problem lies in reducing the use of heuristics without increasing the
number of segmentation hypotheses or vice versa due to the lack of
general rules to describe points along with the variability of points
location.

Instead of creating a new segmentation method without both
heuristics and over-segmentation, in this paper we propose a novel
approach to reduce the number of segmentation hypotheses in a
cost effective manner. We implemented this through the use of a
filter, placed between the segmentation and recognition modules.
The purpose of this method is to classify the segmentation cut into
necessary or unnecessary prior to any attempt of recognition by a
general-purpose classifier, what would cause a reduction in the com-
plexity of the graph shown in Fig. 2a, and could consequently reduce
the computational cost. Since we are dealing with a 2-class problem
(necessary and unnecessary segmentation cuts), as explained in Ref.
[9] we have chosen SVM [10] in order to model the segmentation
cuts.

The draft of this concept was first proposed by the authors in
Ref. [9] and to the best of our knowledge, there is no similar method
in the literature. The main idea behind the proposed method is
that unnecessary segmentation cuts are modeled through the use of
over-segmented digits, rather than trying to model unnecessary cuts
through their structural features. A cost-based approach using ROC
(receiver operating characteristics) [11] was deployed to optimize
the proposed filter. We have performed experiments using different
segmentation algorithms to demonstrate the impacts of such a filter.
Experimental results show that the filter can eliminate up to 83% of
the unnecessary segmentation hypotheses. We also show that the
ROC-based cost mechanism increases the overall performance of the
system.

The remaining of this paper is organized as follows: Section 2
describes the baseline system we have used in our experiments
and introduces the architectures based on verification and fil-
tering. Section 3 describes the feature set used to train such a
filter and also presents the basics about ROC. Section 4 reports
the experiments we have performed and Section 5 concludes this
work.

o] (

Fig. 2. (a) Segmentation paths for the string "56" and (b) images that can be easily confused with digits "1" and "0".
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2. Verification versus filtering

To better assess the impacts of the filter we have used
the handwriting recognition system proposed in Ref. [8]. It
takes a segmentation-based recognition with an heuristic over-
segmentation, where the classifier and verifier are the well-known
multilayer perceptron (MLP). The approach combines the outputs
from different levels such as segmentation, recognition, and post-
processing in a probabilistic model, which allows a sound integra-
tion of all knowledge sources used to infer a plausible interpretation.
For a complete description of this system, please see Ref. [8]. Fig. 3
depicts the baseline system.

As we can observe from Fig. 3, this system is based on two parallel
classification models. The former is the general-purpose classifier (10
classes), which is an MLP fed by a feature vector of 132 components
of concavities and contour information. The later is a verifier that
tries to detect over-segmentation. This verifier is an MLP, trained to
detect over-segmentation. It uses a feature vector called MCA (multi-
level concavity analysis), which is composed of 42 features. Later in
this paper we will describe this feature vector. The idea of using such
a verifier is due to the fact that MLPs are not robust enough to deal
with these outliers [12].

Instead of verification, the strategy proposed in this work is based
on filtering. Differently of having a parallel classification model, this
approach consists of a sequential combination of two experts, called
filter and classifier. This concept was introduced by Landgrebe et al.
in Ref. [13], where the first stage classifier (detector) attempts to de-
tect target object distributed among a typically poorly sampled, or
widely distributed outlier class. Then the second classifier operates
on objects selected by the first, and discriminates between sub-target
classes. In our work, the first stage classifier is a filter trained to
discriminate necessary segmentation points from unnecessary ones
while the second one is a general-purpose classifier trained to recog-
nize 10 classes of digits. The filtering strategy is illustrated in Fig. 4.
The idea is that we can reduce the computational cost if we de-
tect over-segmentation before calling the general-purpose classifier.
To achieve such an objective, a cost-based approach using ROC was
used to optimize the filter. We will demonstrate through compre-
hensive experiments that this strategy can reduce considerably the
number of calls to the general-purpose classifier while improving
the performance of the recognizer.

3. Implementation

As stated before, the purpose of this method is to classify segmen-
tation cuts of single- or multiple-touching numerical strings. Since
there is no relation between the position of a segmentation point
and its fitness, the use of structural features was avoided. It has been
demonstrated in Ref. [8] that it is very difficult to extract discrim-
inant information from the segmentation cuts. The way we have
tackled this problem was, rather than trying to understand what
can make a point be considered necessary or unnecessary, try to
find if the segmentation cut caused an over-segmentation. The idea
is that an unnecessary segmentation cut always generates an over-
segmented piece. In this way, the filter is designed to discriminate
isolated digits (wg—necessary points) from over-segmented pieces
(w7 —unnecessary points). An example of these two classes can be
seen in Fig. 5.

The idea of using a cost scheme is related to the fact that missing a
necessary cut is much worse to the handwriting recognition system
than the benefit of correctly identifying an unnecessary cut. In the
remaining of this section we describe the feature set used to train
the filter and we introduce the concepts of ROC and cost analysis.

3.1. Feature set

The innumerous segmentation algorithms presented in the lit-
erature show several strategies and methods to identify candidate
segmentation points. Although some of them have been really suc-
cessful in finding necessary segmentation points, the number of
candidate points generated by these algorithms is a good indicator
of how hard it can be to find features that identify segmentation
cuts with a high discrimination level. As stated somewhere else, the
strategy used in this work lies in identifying over-segmented pieces.

o

Unnecessary

cut Necessary

Fig. 5. Example of necessary and unnecessary cuts.
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Fig. 3. The block diagram of the baseline system proposed by Oliveira et al. [8]. This system was used in this work.
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Fig. 4. The block diagram of the proposed strategy.
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The premise here is that an over-segmented piece is always gener-
ated by an unnecessary segmentation cut. In light of this, we have
chosen to use the feature set proposed by Oliveira et al. in Ref. [8],
the MCA, which has been successfully applied to discriminate over-
segmented pieces from isolated digits.

This feature set is extracted as follows. First of all, each back-
ground pixel of the hypothetical over-segmented part and its orig-
inal touching pair must be labelled with the number of foreground
neighbours that it has in the 4-Freeman directions. This is the initial
concavity level (ICL) for that pixel. An example of an ICL can be seen
in Fig. 6.

2-black
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closed contour)
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Label images are created for the hypothetical over-segmented
part (Iseg, which is one of the segments provided by a given segmen-
tation hypothesis) and the original touching pair Uorig)-

After creating Iseg and Iy, a pixel-level comparison of their ICLs
is done. As a result of this comparison, a new label image, named
MCA is created. Each pixel of Iseg and Iy is compared, if they have
different labels, a specific label is assigned to them in the MCA, in-
dicating that a change in the concavity has occurred. Otherwise the
same label is assigned. Foreground pixels from Iseg also get a specific
label in the MCA image. After creating the MCA, the contextual in-
formation (CI) for the hypothetical over-segmented part is extracted.
The CI of Iseg is the ICL of the areas above and below Iseg, including
all possible foreground pixels. Two examples of MCA can be seen in
Fig. 7.

Seven MCA features are extracted from a given image: num-
ber of background pixels surrounded by two black-pixels, number
of background pixels surrounded by three bla ck-pixels, number of
background pixels surrounded by four black-pixels (but not inside a
closed loop), number of background pixels inside a closed loop, num-
ber of background pixels that suffered a change in its concavity level
(label), number of foreground pixels within MCA region, and number
of foreground pixels outside MCA region but within extended region.

A zoning scheme is used to extract these features. After creating
the MCA label image, the image is divided in 2 x 3 regions and
the seven MCA features are extracted from each region. The feature
vectors of all six regions are concatenated into a single feature vector,
with 42 features. For each segment, one feature vector is extracted.

The reason for using this scheme is that an over-segmented
portion of a given digit usually does not suffer such a big change
on its concavity level, comparing with a correctly segmented digit.
Moreover, the changes in the concavity level for over-segmented
digits occur in different locations more than the changes in correctly
segmented digits, and this behaviour is captured through the use of
a zoning scheme.

.

Cl

MCA

over-segmented
foreground

Fig. 7. Example of MCA.
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3.2. ROC-based cost scheme

To make this paper self-contained, this section presents a brief
introduction of ROC. For a complete reference, please refer to Ref.
[14]. Let us consider our 2-class classification problem (wg and w1),
where each pattern I is mapped to one element of the set {p, n} of
positive and negative class labels. To distinguish between the actual
class and the predict class, we use the labels {Y, N} for the class
predictions produced by a model. Given a classifier and an instance,
there are four possible outcomes. If the instance is positive and it
is classified as positive, it is counted as a true positive (TP); if it is
classified as negative, it is counted as a false negative (FN). If the
instance is negative and it is classified as negative, it is counted as
a true negative (TN); if it is classified as positive, it is counted as a
false positive (FP). These measures are presented in the contingency
table depicted in Fig. 8.

The numbers along the major diagonal represent the correct de-
cision made while the others represent the confusion between the
classes. The following measures can be extracted from this table:

Number of true positive instances

TP rate ~ —
Number of positive samples

(1)

Number of false positive instances

FP rate ~ -
Number of negative samples

(2)

Based on that, an ROC can be defined as a two-dimensional
graph in which TP rate is plotted on Y-axis and FP rate is plot-
ted on X-axis. An ROC graph depicts relative trade-offs between
benefits (TPs) and costs (false positives). Fig. 9a shows an ex-
ample of class-conditional densities and its corresponding ROC
curve.

True Class
p n

@ True False

8 Y Positive Positive
2 (TP) (FP)

[0}
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% False True

SN Negative Negative
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Fig. 8. Contingency table.

//%

/ /o \
TN FN

a

True positive rate

E. Vellasques et al. / Pattern Recognition 41 (2008) 3044 -3053

Several operational points in ROC space are important to note.
The lower left point (0, 0) represents the strategy of never issuing a
positive classification. In this case, such a classifier commits no false
positive errors but also gains no TPs. The opposite strategy, of uncon-
ditionally issuing positive classifications, is represented by the upper
right point (1, 1). The point (0, 1) represents perfect classification.
Usually, one point in the ROC space is better than another if it is to
the northwest (TP rate is higher, FP rate is lower, or both) of the first.

An ROC curve can be a very useful tool either to define a cost
scheme [15] or to define a rejection scheme [16]. In our case, we are
interested in defining an effective cost scheme since there is nothing
to do with a rejected segmentation cut. It must be either classified
as necessary (and then recognized by the general-purpose classifier)
or unnecessary (and filtered out).

From the filter perspective, the cost of classifying a necessary
segmentation cut (wg) as unnecessary is CFN (false negative cost),
and the cost of classifying an unnecessary segmentation cut (o)
as necessary is CTN (true negative cost). The expected classification
(EC) cost is given by

EC=CFN x p(wg) x FN + CIN x p(wq) x FP 3)

where p(wq) and p(wq) denote the priors for each class. This formu-

lation is adapted from Ref. [16], but here instead of two operating

points, only one is used. These two costs will give us a slope, which

is defined as follows:
p(w]) -CIN

" p(wg) - CFN

= (4)

The operational point for a given cost scheme (using these two
costs) can be found by searching the point on the ROC curve where
the line with slope m intersects the curve. The main idea of the
proposed cost scheme is that missing a necessary cut is much worse
to the general-purpose recognition performance than the benefit
brought by correctly identifying and eliminating an unnecessary cut.
If an unnecessary segmentation cut is not detected by the filter, it
still can be detected at the recognition level; but if a necessary cut
is removed, at the recognition level, it cannot be recovered.

In fact, this strategy minimizes the occurrence of FN, but on the
other hand, it also minimizes the occurrence of TN. Later in this
paper we will see that indeed, a larger CFN increases the overall
recognition performance. For this reason, we tried to "punish"” this
type of error very hard.

4. Experiments

All experiments were conducted using 15,000 samples of two-
digit strings (5000 for training and 10,000 for testing). Besides,

0.2

0.4 0.6

False positive rate

0.8

Fig. 9. (a) Class-conditional densities. (b) The corresponding ROC curve and an operating point.
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Table 1
Different configurations used in the experimental protocol

Exp.  Description

A Baseline system without filter and verifier (Fig. 4 without module 2)
B Baseline system with the verifier and no filter (Fig. 3)
C Baseline system with filter (Fig. 4). In this configuration,
the filter does not use the proposed ROC-based cost scheme
D Baseline system with filter using ROC-based cost scheme. The goal of this

experiment is to highlight the importance of the proposed cost scheme
E Baseline system with filter using ROC-based cost scheme and verifier.
It is a mix of the systems depicted in Figs. 3 and 4.

Segment similar
to digit 2
—

Over-segmented
piece

Fig. 10. Over-segmented "2" where the biggest segment can be easily confused with
the digit "2".
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Fig. 11. General-purpose classification performance for No Filter, Filter iso-cost,
Verifier, and Filter + Verifier.

10,000 images of isolated digits, extracted from NIST SD19, were
considered for training. The touching digit samples were extracted
from the synthetic database proposed by Oliveira et al. [7], which
contains 273,452 (300 dpi, bi-tonal) handwritten strings touching
digit pairs and was generated by connecting 2000 isolated digits ex-
tracted from the NIST SD19 database. This database is quite suitable
for these experiments because its ground-truth, i.e. the location of
the optimal segmentation cuts, is available. By definition, an optimal
segmentation cut is the one that correctly separates two characters.
Hence, a touching pair can have different optimal segmentation cuts.
In this work, though, we assume that the optimal segmentation cut
is the one provided by the ground-truth of the database.

Our experimental protocol is two-fold since the impact of the
proposed method on both performance and overall computational
cost are important in order to evaluate the contribution of the pro-
posed method. To assess the impacts on the computational cost, we
have used a measure called TVF (total-number of value features),
which was proposed in Ref. [17] and is given by

n
TVF =" mx; (5)
i=1

where n is the number of classifiers, m; the number of features of the
classifier i and x; the number of instances classified by the classifier
i. This measure is useful to show the burden on the classifier for
a given classification task. Since the feature vectors used by both
classifier and filter are based on concavities, we assume they have
similar cost, and consequently, the cost of extracting such features is
not considered. The impact of the filter on the overall performance
of the system is demonstrated through the experiments described in
Table 1. All these experiments are variations of the systems depicted
in Figs. 3 and 4.

With the experimental protocol defined, the first task was de-
voted to train the filter. As discussed before, the filter was projected
to cope with two classes—isolated digits (wg) and over-segmented
pieces (»q). To train w1, 10,000 samples of isolated digits extracted
from NIST SD19 were used to produce the over-segmented pieces.
The segmentation method proposed by Fenrich [18] was applied to
these samples generating 10,000 images of over-segmented pieces.
Only the smallest over-segmented piece (the one with the smallest
area) of each one of the 10,000 over-segmented digits was used for
this purpose. This was done because we noticed that in most cases,
the biggest segment of an over-segmented digit is easily confused
with a segment obtained by a necessary cut. This can be observed in
Fig. 10.

To train wq, the ground-truth information of 5000 touching digits
was used. Since we consider the ground-truth as optimal segmen-
tation cuts, the MCAs of both digits were used, that is, two feature
vectors were extracted for each sample, summing up 10,000 feature
vectors. In this work, LIBSVM [19] was used to build the filter. The
kernel that yielded better results in our experiments was the Gaus-
sian kernel. The parameters used were C = 128 and y = 0.5. Those
parameters were found through a grid-test using 10-fold cross-fold
validation.

After training the filter, the next experiments were dedicated to
assess its performance on two different segmentation algorithms.
The first one was proposed by Fenrich [18] and it is based mostly
on information of contour and profile. This algorithm is quite simple
and was designed to deal with real problems. Besides, it was the
inspiration for several other segmentation algorithms proposed in
the literature. The second segmentation algorithm we have chosen
is the one proposed by Chen and Wang [3]. Differently from the
Fenrich's algorithm, this one uses information of the skeleton as
features to generate the segmentation points.

The criterion to discard a candidate segmentation cut is that the
filter should assign to wq at least one of the segments of a given
segmentation hypothesis (over-segmentation). Basically, each seg-
ment of a given segmentation hypothesis (where a segmentation
hypothesis corresponds to a path in the graph depicted in Fig. 2) is
matched against the filter. If a single segment is classified as an over-
segmented piece, the whole segmentation hypothesis is discarded.
In this case, one of the possible paths in the graph is eliminated, what
will consequently reduce the number of segmentation hypothesis to
be classified by the general-purpose classifier.

4.1. Experiments with Fenrich's algorithm

As mentioned before, this algorithm makes use of contour and
profile features in order to find candidate points. It generates in aver-
age 3.2 segmentation cuts for each two-digit string (with a standard
deviation of 1). This segmentation method was applied on 10,000
samples resulting in 31,305 segmentation cuts.

The first experiment carried out consists in comparing the config-
uration "A", "B", "C", and "C+D" (which is the same as "E") reported
in Table 1. In this and all other experiments involving recognition
performance, the error versus rejection curve is used. In order to ob-
tain this curve, the error rate for different thresholds on the global
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Table 2
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Cost schemes used in the experiments

Scheme CTN CFN Threshold Probability threshold (Negative) (%)
Cc1 -10 10 1.422 1.21
C2 -10 20 0.430 20.79
Cc3 -10 30 —1.295 98.21
C4 -10 40 —1.561 99.2
c5 -10 50 —1.607 99.31
6 -10 60 —1.645 99.38
7 -10 70 ~1.645 9938
c8 -10 80 ~1.889 99.71
9 -10 90 -2273 99.99
10 -10 100 —2.462 99.99
11 ~10 110 —2.949 99.99
1 ~ - - - — r———
~_ Iso-Cost Decision o ROG
0.9 | \\\ Threshold ol e 1
N . H 8%
08 | ~ 7 C4 A
v &
07} ,).’i‘ & 1
7/ ~ v C8
0.6 | ~/ S © ol 4 <
’ ,/’ A ¢ G X
/ ~
o St 7 4 ] 0]
r 0.5 e \\\ £
/ ~ [hd
04 t / S 4 =
/ \'\ g
03 / ~ - L
f" \\
0.2 \\\ 1
0.1}/ e S
0 i . ; . ! A " , ™
0O 01 02 03 04 05 06 07 08 09 1 0 * * * *
=5 0 5 10 15 20 25

Fig. 12. Operational points for given cost schemes.

decision (whole string) was computed. It can be observed from this
first experiment (Fig. 11) that the best performance was achieved by
system "B". The filter, on the other hand, achieved the worst perfor-
mance. This is due to the fact that several necessary segmentation
cuts were removed. As mentioned previously, this kind of mistake
should be avoided, otherwise the general-purpose classifier will not
be able to recognize the string. To overcome this kind of problem, we
have deployed different cost schemes, which are reported in Table 2.

Eleven different cost schemes, from C1 (iso-cost) to C11 were
evaluated. A typical SVM decision function is based on a zero thresh-
old, i.e. if the score (which means the distance of a test vector from
the separating hyperplane) is greater than 0, it is classified as pos-
itive. Otherwise, it is classified as negative. Choosing a different
threshold is the same thing as moving this hyperplane to a new lo-
cation. Since these scores are unbalanced, we have chosen to convert
them into probabilities, using for that the method proposed by Platt
[20]. In this scheme, two probabilities are used in order to classify a
sample—the probability of being a positive sample and the probabil-
ity of being a negative sample. The operational points for the given
cost schemes can be seen in Fig. 12.

Fig. 13 compares the performance of the filter using the proposed
cost schemes reported in Table 2. Since our objective is to assess
the performance of the filter rather than the recognition rate of the
system, we thought the error/reject trade-offs would be more useful
than recognition rates. Another experiment we have done was to
test all the cost schemes along with the verifier. The results were
very similar to those presented in Fig. 13.

It can be seen that the results of the filter using the cost
schemes from C3 to C11 are quite similar. To better compare these

Rejection Rate (%)

Fig. 13. Performance of the system using the proposed cost schemes.
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Fig. 14. Comparison among different system configurations.

results, we have applied the best two schemes we found during the
experiments (C9 and C11) to the filter. Fig. 14 compares systems "A",
"B", "C", and "D" using cost schemes C9 and C11. This figure shows
the benefits brought by using the proposed method along with a cost
scheme.
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Table 3
Impact on computational cost for Fenrich's algorithm
Scheme # of Hypothesis # of Filter calls # of Verifier calls # of Classifier calls TVF (x107)
No filter 143,533 0 0 527,429 6.96
Verifier 143,533 0 527,429 527,429 9.17
Filter C3 23,519 235,166 0 53,459 1.69
Filter C9 37,898 268,710 0 100,122 245
Filter C11 49,388 295,100 0 139,524 3.08
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Fig. 15. Similar segmentation cuts generated by Chen and Wang's algorithm. 04 g 8? b
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Besides the improvements brought in terms of performance, the * C9
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main contribution of the filter is related to the reduction of the > 011
computational cost. To demonstrate that, we have used the TVF mea- 0.1 | -
sure presented in Eq. (5). Table 3 shows the impacts of the filter in 0
the computational cost. The columns with value 0 indicates that the
p 0 0.2 0.4 0.6 0.8 1

module was not used in the test. For example, in the first line TVF
considers just the calls for the classifier.

As we have seen before (Fig. 13), the performance of the cost
schemes from C3 to C11 are very similar, but C3 is much more eco-
nomic, computationally speaking, than C9 and C11. For this reason
we included C3 in the comparison reported in Table 3. We can ob-
serve that the number of calls to the classifier could be reduced in
about 10 times (from 527,429 to 53,459). In addition, this decrease
in the computational cost was obtained along with a reduction of the
error rate as depicted in Fig. 13. Other achievement worth of notice
is the decrease of 83% in the number of segmentation hypothesis
that are evaluated by the general-purpose classifier (from 143,533
to 23,519).

4.2. Experiments with Chen and Wang's algorithm

The segmentation algorithm proposed by Chen and Wang [3]
was also used to assess the filter. This algorithm makes use of a
thinning algorithm in order to obtain the background and foreground
skeletons of the given image. Fork points, end points, and bend points
from the skeletons are used as features.

Generally speaking, this algorithm performs better than Fenrich's,
but it is more expensive due to the huge number of segmentation
cuts generated. Very often, some of the points are quite similar as
depicted in Fig. 15. In this figure, we can observe three different
segmentation cuts that perfectly segment the image. Point "3" is
the ground-truth while points "1" and "2" were generated by the
segmentation.

The first question here is: should we retrain the filter or not?
We argue that the filter does not need a new training because the
shape of over-segmented pieces generated by over-segmentation al-
gorithms are quite similar. To confirm that, we have trained the fil-
ter using the over-segmented pieces generated by Chen and Wang's
and used it to assess the impacts on the recognition system. The re-
sults observed were very similar to those results achieved with the
filter trained with over-segmented pieces produced by Fenrich's al-
gorithm.

On the other hand, one thing that does change is the prior for
each class. Since this algorithm produces a different number of

FP

Fig. 16. Operational points for Chen and Wang's algorithm.
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Fig. 17. Impacts of the filter on the recognition system using Chen and Wang's
algorithm.

segmentation cuts, the priors p(wg) and p(wq) are different. Based
on that, a new cost analysis was performed, which produced the
operating points presented in Fig. 16.

Similar to the previous experiments, here the filter C3 was the
one that brought the best results. Fig. 17 shows the impacts of the
filter on Chen and Wang's algorithm. As we can observe, the filter C3
was able to bring a slight improvement to the overall performance of
the system. However, differently from Fenrich's algorithm, the filter
was not able to reduce the computational cost. In such a case, one
important aspect that mitigated the impacts of the filter was the huge
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Table 4

Impact on computational cost for Chen and Wang's algorithm

Scheme # of Hypothesis # of Filter calls # of Verifier calls # of Classifier calls TVF (x107)
No filter 235,012 0 0 819,257 10.8

Filter C3 198,414 474,518 0 729,692 12.1
Verifier 235,012 0 498,702 819,257 129

Fig. 18. Unnecessary cut not detected by the filter.

number of segmentation points similar to the optimal segmentation
cut (see Fig. 15). The consequence is that the filter is called several
times and since the segmentation cuts (e.g., points "1" and "2" from
Fig. 15) are very similar to the optimal segmentation cut (point "3"
from Fig. 15), they are classified as necessary segmentation cuts.
Table 4 reports the TVF for Chen and Wang's algorithm.

5. Discussion and conclusion

Although the results obtained show the benefits of the proposed
method, there is still room for improvement. As we could observe
in the last experiment, the main weakness of the filter is related to
the detection of segmentation points similar to the optimal one. In
other words, if the segmentation cut is not necessary, but it correctly
segments the string in some way, the filter will classify it as nec-
essary. This kind of segmentation point is depicted in Fig. 18, were
"0" and "3" where correctly classified in spite of the fact that the
segmentation cuts is not the optimal one.

To mitigate this weakness, one strategy would consist in adding
some contextual information to the filter. For example, if there is
several segmentation cuts classified as necessary in the same region,
the filter could keep only one (the one with the highest probability)
and discard the remaining. This could alleviate the problem the filter
faced in Chen and Wang's algorithm. This will be subject of further
studies.

The proposed filter was tested on two different segmentation
algorithms. The first one is quite fast and performs well for different
touching types. The second is more sophisticated, but it cannot be
applied to real application in its present form. Our goal in this paper
was to demonstrate the efficiency of the filter but also discuss about
its limits.

Although the experiments were conducted in two-digit strings,
the use of MCA features makes it possible to expand this method to
strings of any length as the process of identifying over-segmented
digits in numeral strings is neither tied to the string length nor to
the number of segmentation cuts. Since an over-segment is found

within a string, it should be discarded. The use of structural features
otherwise limits the method to a given string length.
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